
kazoo Documentation
Release 2.8.0

Various Authors

Jan 22, 2023

Contents

1 Reference Docs 3

2 Why 57

3 Source Code 59

4 Bugs/Support 61

5 Indices and tables 63

6 License 65

7 Authors 67

Python Module Index 69

Index 71

i

ii

kazoo Documentation, Release 2.8.0

Kazoo is a Python library designed to make working with Zookeeper a more hassle-free experience that is less prone
to errors.

Kazoo features:

• A wide range of recipe implementations, like Lock, Election or Queue

• Data and Children Watchers

• Simplified Zookeeper connection state tracking

• Unified asynchronous API for use with greenlets or threads

• Support for gevent >= 1.2

• Support for eventlet

• Support for Zookeeper 3.3, 3.4, and 3.5 servers

• Integrated testing helpers for Zookeeper clusters

• Pure-Python based implementation of the wire protocol, avoiding all the memory leaks, lacking features, and
debugging madness of the C library

Kazoo is heavily inspired by Netflix Curator simplifications and helpers.

Note: You should be familiar with Zookeeper and have read the Zookeeper Programmers Guide before using kazoo.

Contents 1

http://gevent.org/
http://eventlet.net/
https://github.com/Netflix/curator
https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html

kazoo Documentation, Release 2.8.0

2 Contents

CHAPTER 1

Reference Docs

1.1 Installing

kazoo can be installed via pip:

$ pip install kazoo

Kazoo implements the Zookeeper protocol in pure Python, so you don’t need any Python Zookeeper C bindings
installed.

1.2 Basic Usage

1.2.1 Connection Handling

To begin using Kazoo, a KazooClient object must be created and a connection established:

from kazoo.client import KazooClient

zk = KazooClient(hosts='127.0.0.1:2181')
zk.start()

By default, the client will connect to a local Zookeeper server on the default port (2181). You should make sure
Zookeeper is actually running there first, or the start command will be waiting until its default timeout.

Once connected, the client will attempt to stay connected regardless of intermittent connection loss or Zookeeper
session expiration. The client can be instructed to drop a connection by calling stop:

zk.stop()

3

kazoo Documentation, Release 2.8.0

Logging Setup

If logging is not setup for your application, you can get following message:

No handlers could be found for logger "kazoo.client"

To avoid this issue you can at the very minimum do the following:

import logging
logging.basicConfig()

Read Python’s logging tutorial for more details.

Listening for Connection Events

It can be useful to know when the connection has been dropped, restored, or when the Zookeeper session has expired.
To simplify this process Kazoo uses a state system and lets you register listener functions to be called when the state
changes.

from kazoo.client import KazooState

def my_listener(state):
if state == KazooState.LOST:

Register somewhere that the session was lost
elif state == KazooState.SUSPENDED:

Handle being disconnected from Zookeeper
else:

Handle being connected/reconnected to Zookeeper

zk.add_listener(my_listener)

When using the kazoo.recipe.lock.Lock or creating ephemeral nodes, its highly recommended to add a state
listener so that your program can properly deal with connection interruptions or a Zookeeper session loss.

Understanding Kazoo States

The KazooState object represents several states the client transitions through. The current state of the client can
always be determined by viewing the state property. The possible states are:

• LOST

• CONNECTED

• SUSPENDED

When a KazooClient instance is first created, it is in the LOST state. After a connection is established it transitions
to the CONNECTED state. If any connection issues come up or if it needs to connect to a different Zookeeper cluster
node, it will transition to SUSPENDED to let you know that commands cannot currently be run. The connection will
also be lost if the Zookeeper node is no longer part of the quorum, resulting in a SUSPENDED state.

Upon re-establishing a connection the client could transition to LOST if the session has expired, or CONNECTED if
the session is still valid.

Note: These states should be monitored using a listener as described previously so that the client behaves properly
depending on the state of the connection.

4 Chapter 1. Reference Docs

https://docs.python.org/howto/logging.html

kazoo Documentation, Release 2.8.0

When a connection transitions to SUSPENDED, if the client is performing an action that requires agreement with
other systems (using the Lock recipe for example), it should pause what it’s doing. When the connection has been
re-established the client can continue depending on if the state is LOST or transitions directly to CONNECTED again.

When a connection transitions to LOST, any ephemeral nodes that have been created will be removed by Zookeeper.
This affects all recipes that create ephemeral nodes, such as the Lock recipe. Lock’s will need to be re-acquired after
the state transitions to CONNECTED again. This transition occurs when a session expires or when you stop the clients
connection.

Valid State Transitions

• LOST -> CONNECTED

New connection, or previously lost one becoming connected.

• CONNECTED -> SUSPENDED

Connection loss to server occurred on a connection.

• CONNECTED -> LOST

Only occurs if invalid authentication credentials are provided after the connection was established.

• SUSPENDED -> LOST

Connection resumed to server, but then lost as the session was expired.

• SUSPENDED -> CONNECTED

Connection that was lost has been restored.

Read-Only Connections

New in version 0.6.

Zookeeper 3.4 and above supports a read-only mode. This mode must be turned on for the servers in the Zookeeper
cluster for the client to utilize it. To use this mode with Kazoo, the KazooClient should be called with the read_only
option set to True. This will let the client connect to a Zookeeper node that has gone read-only, and the client will
continue to scan for other nodes that are read-write.

from kazoo.client import KazooClient

zk = KazooClient(hosts='127.0.0.1:2181', read_only=True)
zk.start()

A new attribute on KeeperState has been added, CONNECTED_RO. The connection states above are still valid,
however upon CONNECTED, you will need to check the clients non- simplified state to see if the connection is
CONNECTED_RO. For example:

from kazoo.client import KazooState
from kazoo.client import KeeperState

@zk.add_listener
def watch_for_ro(state):

if state == KazooState.CONNECTED:
if zk.client_state == KeeperState.CONNECTED_RO:

print("Read only mode!")
else:

print("Read/Write mode!")

1.2. Basic Usage 5

http://wiki.apache.org/hadoop/ZooKeeper/GSoCReadOnlyMode

kazoo Documentation, Release 2.8.0

It’s important to note that a KazooState is passed in to the listener but the read-only information is only available by
comparing the non-simplified client state to the KeeperState object.

Warning: A client using read-only mode should not use any of the recipes.

1.2.2 Zookeeper CRUD

Zookeeper includes several functions for creating, reading, updating, and deleting Zookeeper nodes (called znodes or
nodes here). Kazoo adds several convenience methods and a more Pythonic API.

Creating Nodes

Methods:

• ensure_path()

• create()

ensure_path() will recursively create the node and any nodes in the path necessary along the way, but can not set
the data for the node, only the ACL.

create() creates a node and can set the data on the node along with a watch function. It requires the path to it to
exist first, unless the makepath option is set to True.

Ensure a path, create if necessary
zk.ensure_path("/my/favorite")

Create a node with data
zk.create("/my/favorite/node", b"a value")

Reading Data

Methods:

• exists()

• get()

• get_children()

exists() checks to see if a node exists.

get() fetches the data of the node along with detailed node information in a ZnodeStat structure.

get_children() gets a list of the children of a given node.

Determine if a node exists
if zk.exists("/my/favorite"):

Do something

Print the version of a node and its data
data, stat = zk.get("/my/favorite")
print("Version: %s, data: %s" % (stat.version, data.decode("utf-8")))

List the children

(continues on next page)

6 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

(continued from previous page)

children = zk.get_children("/my/favorite")
print("There are %s children with names %s" % (len(children), children))

Updating Data

Methods:

• set()

set() updates the data for a given node. A version for the node can be supplied, which will be required to match
before updating the data, or a BadVersionError will be raised instead of updating.

zk.set("/my/favorite", b"some data")

Deleting Nodes

Methods:

• delete()

delete() deletes a node, and can optionally recursively delete all children of the node as well. A version can
be supplied when deleting a node which will be required to match the version of the node before deleting it or a
BadVersionError will be raised instead of deleting.

zk.delete("/my/favorite/node", recursive=True)

1.2.3 Retrying Commands

Connections to Zookeeper may get interrupted if the Zookeeper server goes down or becomes unreachable. By default,
kazoo does not retry commands, so these failures will result in an exception being raised. To assist with failures kazoo
comes with a retry() helper that will retry a function should one of the Zookeeper connection exceptions get raised.

Example:

result = zk.retry(zk.get, "/path/to/node")

Some commands may have unique behavior that doesn’t warrant automatic retries on a per command basis. For
example, if one creates a node a connection might be lost before the command returns successfully but the node
actually got created. This results in a kazoo.exceptions.NodeExistsError being raised when it runs again.
A similar unique situation arises when a node is created with ephemeral and sequence options set, documented here
on the Zookeeper site.

Since the retry() method takes a function to call and its arguments, a function that runs multiple Zookeeper com-
mands could be passed to it so that the entire function will be retried if the connection is lost.

This snippet from the lock implementation shows how it uses retry to re-run the function acquiring a lock, and checks
to see if it was already created to handle this condition:

kazoo.recipe.lock snippet

def acquire(self):
"""Acquire the mutex, blocking until it is obtained"""
try:

(continues on next page)

1.2. Basic Usage 7

http://zookeeper.apache.org/doc/trunk/recipes.html#sc_recipes_errorHandlingNote
http://zookeeper.apache.org/doc/trunk/recipes.html#sc_recipes_errorHandlingNote

kazoo Documentation, Release 2.8.0

(continued from previous page)

self.client.retry(self._inner_acquire)
self.is_acquired = True

except KazooException:
if we did ultimately fail, attempt to clean up
self._best_effort_cleanup()
self.cancelled = False
raise

def _inner_acquire(self):
self.wake_event.clear()

make sure our election parent node exists
if not self.assured_path:

self.client.ensure_path(self.path)

node = None
if self.create_tried:

node = self._find_node()
else:

self.create_tried = True

if not node:
node = self.client.create(self.create_path, self.data,

ephemeral=True, sequence=True)
strip off path to node
node = node[len(self.path) + 1:]

create_tried records whether it has tried to create the node already in the event the connection is lost before the node
name is returned.

Custom Retries

Sometimes you may wish to have specific retry policies for a command or set of commands that differs from the
retry() method. You can manually create a KazooRetry instance with the specific retry policy you prefer:

from kazoo.retry import KazooRetry

kr = KazooRetry(max_tries=3, ignore_expire=False)
result = kr(client.get, "/some/path")

This will retry the client.get command up to 3 times, and raise a session expiration if it occurs. You can also
make an instance with the default behavior that ignores session expiration during a retry.

1.2.4 Watchers

Kazoo can set watch functions on a node that can be triggered either when the node has changed or when the children
of the node change. This change to the node or children can also be the node or its children being deleted.

Watchers can be set in two different ways, the first is the style that Zookeeper supports by default for one-time watch
events. These watch functions will be called once by kazoo, and do not receive session events, unlike the native
Zookeeper watches. Using this style requires the watch function to be passed to one of these methods:

• get()

• get_children()

8 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

• exists()

A watch function passed to get() or exists() will be called when the data on the node changes or the node itself
is deleted. It will be passed a WatchedEvent instance.

def my_func(event):
check to see what the children are now

Call my_func when the children change
children = zk.get_children("/my/favorite/node", watch=my_func)

Kazoo includes a higher level API that watches for data and children modifications that’s easier to use as it doesn’t
require re-setting the watch every time the event is triggered. It also passes in the data and ZnodeStatwhen watching
a node or the list of children when watching a nodes children. Watch functions registered with this API will be called
immediately and every time there’s a change, or until the function returns False. If allow_session_lost is set to True,
then the function will no longer be called if the session is lost.

The following methods provide this functionality:

• ChildrenWatch

• DataWatch

These classes are available directly on the KazooClient instance and don’t require the client object to be passed in
when used in this manner. The instance returned by instantiating either of the classes can be called directly allowing
them to be used as decorators:

@zk.ChildrenWatch("/my/favorite/node")
def watch_children(children):

print("Children are now: %s" % children)
Above function called immediately, and from then on

@zk.DataWatch("/my/favorite")
def watch_node(data, stat):

print("Version: %s, data: %s" % (stat.version, data.decode("utf-8")))

1.2.5 Transactions

New in version 0.6.

Zookeeper 3.4 and above supports the sending of multiple commands at once that will be committed as a single atomic
unit. Either they will all succeed or they will all fail. The result of a transaction will be a list of the success/failure
results for each command in the transaction.

transaction = zk.transaction()
transaction.check('/node/a', version=3)
transaction.create('/node/b', b"a value")
results = transaction.commit()

The transaction() method returns a TransactionRequest instance. It’s methods may be called to queue
commands to be completed in the transaction. When the transaction is ready to be sent, the commit() method on it
is called.

In the example above, there’s a command not available unless a transaction is being used, check. This can check nodes
for a specific version, which could be used to make the transaction fail if a node doesn’t match a version that it should
be at. In this case the node /node/a must be at version 3 or /node/b will not be created.

1.2. Basic Usage 9

kazoo Documentation, Release 2.8.0

1.3 Asynchronous Usage

The asynchronous Kazoo API relies on the IAsyncResult object which is returned by all the asynchronous meth-
ods. Callbacks can be added with the rawlink() method which works in a consistent manner whether threads or an
asynchronous framework like gevent is used.

Kazoo utilizes a pluggable IHandler interface which abstracts the callback system to ensure it works consistently.

1.3.1 Connection Handling

Creating a connection:

from kazoo.client import KazooClient
from kazoo.handlers.gevent import SequentialGeventHandler

zk = KazooClient(handler=SequentialGeventHandler())

returns immediately
event = zk.start_async()

Wait for 30 seconds and see if we're connected
event.wait(timeout=30)

if not zk.connected:
Not connected, stop trying to connect
zk.stop()
raise Exception("Unable to connect.")

In this example, the wait method is used on the event object returned by the start_async() method. A timeout is
always used because its possible that we might never connect and that should be handled gracefully.

The SequentialGeventHandler is used when you want to use gevent (and
SequentialEventletHandler when eventlet is used). Kazoo doesn’t rely on gevents/eventlet monkey patching
and requires that you pass in the appropriate handler, the default handler is SequentialThreadingHandler.

1.3.2 Asynchronous Callbacks

All kazoo _async methods except for start_async() return an IAsyncResult instance. These instances allow
you to see when a result is ready, or chain one or more callback functions to the result that will be called when it’s
ready.

The callback function will be passed the IAsyncResult instance and should call the get()method on it to retrieve
the value. This call could result in an exception being raised if the asynchronous function encountered an error. It
should be caught and handled appropriately.

Example:

import sys

from kazoo.exceptions import ConnectionLossException
from kazoo.exceptions import NoAuthException

def my_callback(async_obj):
try:

children = async_obj.get()

(continues on next page)

10 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

(continued from previous page)

do_something(children)
except (ConnectionLossException, NoAuthException):

sys.exit(1)

Both these statements return immediately, the second sets a callback
that will be run when get_children_async has its return value
async_obj = zk.get_children_async("/some/node")
async_obj.rawlink(my_callback)

1.3.3 Zookeeper CRUD

The following CRUD methods all work the same as their synchronous counterparts except that they return an
IAsyncResult object.

Creating Method:

• create_async()

Reading Methods:

• exists_async()

• get_async()

• get_children_async()

Updating Methods:

• set_async()

Deleting Methods:

• delete_async()

The ensure_path() has no asynchronous counterpart at the moment nor can the delete_async() method do
recursive deletes.

1.4 Implementation Details

Up to version 0.3 kazoo used the Python bindings to the Zookeeper C library. Unfortunately those bindings are fairly
buggy and required a fair share of weird workarounds to interface with the native OS thread used in those bindings.

Starting with version 0.4 kazoo implements the entire Zookeeper wire protocol itself in pure Python. Doing so removed
the need for the workarounds and made it much easier to implement the features missing in the C bindings.

1.4.1 Handlers

Both the Kazoo handlers run 3 separate queues to help alleviate deadlock issues and ensure consistent execution order
regardless of environment. The SequentialGeventHandler runs a separate greenlet for each queue that pro-
cesses the callbacks queued in order. The SequentialThreadingHandler runs a separate thread for each queue
that processes the callbacks queued in order (thus the naming scheme which notes they are sequential in anticipation
that there could be handlers shipped in the future which don’t make this guarantee).

Callbacks are queued by type, the 3 types being:

1. Session events (State changes, registered listener functions)

1.4. Implementation Details 11

kazoo Documentation, Release 2.8.0

2. Watch events (Watch callbacks, DataWatch, and ChildrenWatch functions)

3. Completion callbacks (Functions chained to IAsyncResult objects)

This ensures that calls can be made to Zookeeper from any callback except for a state listener without worrying that
critical session events will be blocked.

Warning: Its important to remember that if you write code that blocks in one of these functions then no queued
functions of that type will be executed until the code stops blocking. If your code might block, it should run itself
in a separate greenlet/thread so that the other callbacks can run.

1.5 Testing

Kazoo has several test harnesses used internally for its own tests that are exposed as public API’s for use in your own
tests for common Zookeeper cluster management and session testing. They can be mixed in with your own unittest or
pytest tests along with a mock object that allows you to force specific KazooClient commands to fail in various ways.

The test harness needs to be able to find the Zookeeper Java libraries. You need to specify an environment variable
called ZOOKEEPER_PATH and point it to their location, for example /usr/share/java. The directory should contain a
zookeeper-*.jar and a lib directory containing at least a log4j-*.jar.

If your Java setup is complex, you may also override our classpath mechanism completely by specifying an environ-
ment variable called ZOOKEEPER_CLASSPATH. If provided, it will be used unmodified as the Java classpath for
Zookeeper.

You can specify an optional ZOOKEEPER_PORT_OFFSET environment variable to influence the ports the cluster is
using. By default the offset is 20000 and a cluster with three members will use ports 20000, 20010 and 20020.

1.5.1 Kazoo Test Harness

The KazooTestHarness can be used directly or mixed in with your test code.

Example:

from kazoo.testing import KazooTestHarness

class MyTest(KazooTestHarness):
def setUp(self):

self.setup_zookeeper()

def tearDown(self):
self.teardown_zookeeper()

def testmycode(self):
self.client.ensure_path('/test/path')
result = self.client.get('/test/path')
...

1.5.2 Kazoo Test Case

The KazooTestCase is complete test case that is equivalent to the mixin setup of KazooTestHarness. An
equivalent test to the one above:

12 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

from kazoo.testing import KazooTestCase

class MyTest(KazooTestCase):
def testmycode(self):

self.client.ensure_path('/test/path')
result = self.client.get('/test/path')
...

1.5.3 Zake

For those that do not need (or desire) to setup a Zookeeper cluster to test integration with kazoo there is also a library
called zake. Contributions to Zake’s github repository are welcome.

Zake can be used to provide a mock client to layers of your application that interact with kazoo (using the same client
interface) during testing to allow for introspection of what was stored, which watchers are active (and more) after your
test of your application code has finished.

1.6 API Documentation

Comprehensive reference material for every public API exposed by kazoo is available within this chapter. The API
documentation is organized alphabetically by module name.

1.6.1 kazoo.client

Kazoo Zookeeper Client

Public API

class kazoo.client.KazooClient
An Apache Zookeeper Python client supporting alternate callback handlers and high-level function-
ality.

Watch functions registered with this class will not get session events, unlike the default Zookeeper
watches. They will also be called with a single argument, a WatchedEvent instance.

__init__(hosts=’127.0.0.1:2181’, timeout=10.0, client_id=None, handler=None, de-
fault_acl=None, auth_data=None, sasl_options=None, read_only=None,
randomize_hosts=True, connection_retry=None, command_retry=None, log-
ger=None, keyfile=None, keyfile_password=None, certfile=None, ca=None,
use_ssl=False, verify_certs=True, **kwargs)

Create a KazooClient instance. All time arguments are in seconds.
Parameters

• hosts – Comma-separated list of hosts to connect to (e.g.
127.0.0.1:2181,127.0.0.1:2182,[::1]:2183).

• timeout – The longest to wait for a Zookeeper connection.
• client_id – A Zookeeper client id, used when re-establishing a prior session

connection.
• handler – An instance of a class implementing the IHandler interface for

callback handling.
• default_acl – A default ACL used on node creation.

1.6. API Documentation 13

https://pypi.python.org/pypi/zake/
https://github.com/yahoo/Zake

kazoo Documentation, Release 2.8.0

• auth_data – A list of authentication credentials to use for the connection.
Should be a list of (scheme, credential) tuples as add_auth() takes.

• sasl_options – SASL options for the connection, if SASL support is to be
used. Should be a dict of SASL options passed to the underlying pure-sasl library.

For example using the DIGEST-MD5 mechnism:

sasl_options = {
'mechanism': 'DIGEST-MD5',
'username': 'myusername',
'password': 'mypassword'

}

For GSSAPI, using the running process’ ticket cache:

sasl_options = {
'mechanism': 'GSSAPI',
'service': 'myzk', # optional
'principal': 'client@EXAMPLE.COM' # optional

}

• read_only – Allow connections to read only servers.
• randomize_hosts – By default randomize host selection.
• connection_retry – A kazoo.retry.KazooRetry object to use for

retrying the connection to Zookeeper. Also can be a dict of options which will be
used for creating one.

• command_retry – A kazoo.retry.KazooRetry object to use for the
KazooClient.retry() method. Also can be a dict of options which will
be used for creating one.

• logger – A custom logger to use instead of the module global log instance.
• keyfile – SSL keyfile to use for authentication
• keyfile_password – SSL keyfile password
• certfile – SSL certfile to use for authentication
• ca – SSL CA file to use for authentication
• use_ssl – argument to control whether SSL is used or not
• verify_certs – when using SSL, argument to bypass certs verification

Basic Example:

zk = KazooClient()
zk.start()
children = zk.get_children('/')
zk.stop()

As a convenience all recipe classes are available as attributes and get automatically bound to
the client. For example:

zk = KazooClient()
zk.start()
lock = zk.Lock('/lock_path')

New in version 0.6: The read_only option. Requires Zookeeper 3.4+

New in version 0.6: The retry_max_delay option.

New in version 0.6: The randomize_hosts option.

Changed in version 0.8: Removed the unused watcher argument (was second argument).

New in version 1.2: The connection_retry, command_retry and logger options.

14 Chapter 1. Reference Docs

https://pypi.org/project/pure-sasl

kazoo Documentation, Release 2.8.0

New in version 2.7: The sasl_options option.

handler
The IHandler strategy used by this client. Gives access to appropriate synchronization ob-
jects.

retry(func, *args, **kwargs)
Runs the given function with the provided arguments, retrying if it fails because the ZooKeeper
connection is lost, see Retrying Commands.

state
A KazooState attribute indicating the current higher-level connection state.

Note: Up to version 2.6.1, requests could only be submitted in the CONNECTED state. Re-
quests submitted while SUSPENDED would immediately raise a SessionExpiredError.
This was problematic, as sessions are usually recovered on reconnect.

Kazoo now simply queues requests submitted in the SUSPENDED state, expecting a recovery.
This matches the behavior of the Java and C clients.

Requests submitted in a LOST state still fail immediately with the corresponding exception.

See:
• https://github.com/python-zk/kazoo/issues/374 and
• https://github.com/python-zk/kazoo/pull/570

client_state
Returns the last Zookeeper client state

This is the non-simplified state information and is generally not as useful as the simplified
KazooState information.

client_id
Returns the client id for this Zookeeper session if connected.

Returns client id which consists of the session id and password.
Return type tuple

connected
Returns whether the Zookeeper connection has been established.

set_hosts(hosts, randomize_hosts=None)
sets the list of hosts used by this client.

This function accepts the same format hosts parameter as the init function and sets the client to
use the new hosts the next time it needs to look up a set of hosts. This function does not affect
the current connected status.

It is not currently possible to change the chroot with this function, setting a host list with a new
chroot will raise a ConfigurationError.

Parameters
• hosts – see description in KazooClient.__init__()
• randomize_hosts – override client default for host randomization

Raises ConfigurationError if the hosts argument changes the chroot
New in version 1.4.

Warning: Using this function to point a client to a completely disparate zookeeper server
cluster has undefined behavior.

1.6. API Documentation 15

https://github.com/python-zk/kazoo/issues/374
https://github.com/python-zk/kazoo/pull/570

kazoo Documentation, Release 2.8.0

add_listener(listener)
Add a function to be called for connection state changes.

This function will be called with a KazooState instance indicating the new connection state
on state transitions.

Warning: This function must not block. If its at all likely that it might need data or a value
that could result in blocking than the spawn() method should be used so that the listener
can return immediately.

remove_listener(listener)
Remove a listener function

start(timeout=15)
Initiate connection to ZK.

Parameters timeout – Time in seconds to wait for connection to succeed.
Raises timeout_exception if the connection wasn’t established within timeout

seconds.

start_async()
Asynchronously initiate connection to ZK.

Returns An event object that can be checked to see if the connection is alive.
Return type Event compatible object.

stop()
Gracefully stop this Zookeeper session.

This method can be called while a reconnection attempt is in progress, which will then be
halted.

Once the connection is closed, its session becomes invalid. All the ephemeral nodes in the
ZooKeeper server associated with the session will be removed. The watches left on those nodes
(and on their parents) will be triggered.

restart()
Stop and restart the Zookeeper session.

close()
Free any resources held by the client.

This method should be called on a stopped client before it is discarded. Not doing so may result
in filehandles being leaked.

New in version 1.0.

command(cmd=’ruok’)
Sent a management command to the current ZK server.

Examples are ruok, envi or stat.
Returns An unstructured textual response.
Return type str
Raises ConnectionLoss if there is no connection open, or possibly a socket.
error if there’s a problem with the connection used just for this command.

New in version 0.5.

server_version(retries=3)
Get the version of the currently connected ZK server.

Returns The server version, for example (3, 4, 3).
Return type tuple

16 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

New in version 0.5.

add_auth(scheme, credential)
Send credentials to server.

Parameters
• scheme – authentication scheme (default supported: “digest”).
• credential – the credential – value depends on scheme.

Returns True if it was successful.
Return type bool
Raises AuthFailedError if it failed though the session state will be set to

AUTH_FAILED as well.

add_auth_async(scheme, credential)
Asynchronously send credentials to server. Takes the same arguments as add_auth().

Return type IAsyncResult

unchroot(path)
Strip the chroot if applicable from the path.

sync_async(path)
Asynchronous sync.

Return type IAsyncResult

sync(path)
Sync, blocks until response is acknowledged.

Flushes channel between process and leader.
Parameters path – path of node.
Returns The node path that was synced.
Raises ZookeeperError if the server returns a non-zero error code.

New in version 0.5.

create(path, value=”, acl=None, ephemeral=False, sequence=False, makepath=False, in-
clude_data=False)

Create a node with the given value as its data. Optionally set an ACL on the node.

The ephemeral and sequence arguments determine the type of the node.

An ephemeral node will be automatically removed by ZooKeeper when the session associated
with the creation of the node expires.

A sequential node will be given the specified path plus a suffix i where i is the current sequential
number of the node. The sequence number is always fixed length of 10 digits, 0 padded. Once
such a node is created, the sequential number will be incremented by one.

If a node with the same actual path already exists in ZooKeeper, a NodeExistsError will be
raised. Note that since a different actual path is used for each invocation of creating sequential
nodes with the same path argument, the call will never raise NodeExistsError.

If the parent node does not exist in ZooKeeper, a NoNodeError will be raised. Setting the
optional makepath argument to True will create all missing parent nodes instead.

An ephemeral node cannot have children. If the parent node of the given path is ephemeral, a
NoChildrenForEphemeralsError will be raised.

This operation, if successful, will trigger all the watches left on the node of the given
path by exists() and get() API calls, and the watches left on the parent node by
get_children() API calls.

The maximum allowable size of the node value is 1 MB. Values larger than this will cause a
ZookeeperError to be raised.

Parameters

1.6. API Documentation 17

kazoo Documentation, Release 2.8.0

• path – Path of node.
• value – Initial bytes value of node.
• acl – ACL list.
• ephemeral – Boolean indicating whether node is ephemeral (tied to this ses-

sion).
• sequence – Boolean indicating whether path is suffixed with a unique index.
• makepath – Whether the path should be created if it doesn’t exist.
• include_data – Include the ZnodeStat of the node in addition to its real

path. This option changes the return value to be a tuple of (path, stat).
Returns Real path of the new node, or tuple if include_data is True
Return type str
Raises NodeExistsError if the node already exists.

NoNodeError if parent nodes are missing.

NoChildrenForEphemeralsError if the parent node is an ephemeral node.

ZookeeperError if the provided value is too large.

ZookeeperError if the server returns a non-zero error code.
New in version 1.1: The makepath option.

New in version 2.7: The include_data option.

create_async(path, value=”, acl=None, ephemeral=False, sequence=False,
makepath=False, include_data=False)

Asynchronously create a ZNode. Takes the same arguments as create().
Return type IAsyncResult

New in version 1.1: The makepath option.

New in version 2.7: The include_data option.

ensure_path(path, acl=None)
Recursively create a path if it doesn’t exist.

Parameters
• path – Path of node.
• acl – Permissions for node.

ensure_path_async(path, acl=None)
Recursively create a path asynchronously if it doesn’t exist. Takes the same arguments as
ensure_path().

Return type IAsyncResult
New in version 1.1.

exists(path, watch=None)
Check if a node exists.

If a watch is provided, it will be left on the node with the given path. The watch will be triggered
by a successful operation that creates/deletes the node or sets the data on the node.

Parameters
• path – Path of node.
• watch – Optional watch callback to set for future changes to this path.

Returns ZnodeStat of the node if it exists, else None if the node does not exist.
Return type ZnodeStat or None.
Raises ZookeeperError if the server returns a non-zero error code.

exists_async(path, watch=None)
Asynchronously check if a node exists. Takes the same arguments as exists().

Return type IAsyncResult

18 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

get(path, watch=None)
Get the value of a node.

If a watch is provided, it will be left on the node with the given path. The watch will be triggered
by a successful operation that sets data on the node, or deletes the node.

Parameters
• path – Path of node.
• watch – Optional watch callback to set for future changes to this path.

Returns Tuple (value, ZnodeStat) of node.
Return type tuple
Raises NoNodeError if the node doesn’t exist

ZookeeperError if the server returns a non-zero error code

get_async(path, watch=None)
Asynchronously get the value of a node. Takes the same arguments as get().

Return type IAsyncResult

get_children(path, watch=None, include_data=False)
Get a list of child nodes of a path.

If a watch is provided it will be left on the node with the given path. The watch will be triggered
by a successful operation that deletes the node of the given path or creates/deletes a child under
the node.

The list of children returned is not sorted and no guarantee is provided as to its natural or lexical
order.

Parameters
• path – Path of node to list.
• watch – Optional watch callback to set for future changes to this path.
• include_data – Include the ZnodeStat of the node in addition to the chil-

dren. This option changes the return value to be a tuple of (children, stat).
Returns List of child node names, or tuple if include_data is True.
Return type list
Raises NoNodeError if the node doesn’t exist.

ZookeeperError if the server returns a non-zero error code.
New in version 0.5: The include_data option.

get_children_async(path, watch=None, include_data=False)
Asynchronously get a list of child nodes of a path. Takes the same arguments as
get_children().

Return type IAsyncResult

get_acls(path)
Return the ACL and stat of the node of the given path.

Parameters path – Path of the node.
Returns The ACL array of the given node and its ZnodeStat.
Return type tuple of (ACL list, ZnodeStat)
Raises NoNodeError if the node doesn’t exist.

ZookeeperError if the server returns a non-zero error code
New in version 0.5.

get_acls_async(path)
Return the ACL and stat of the node of the given path. Takes the same arguments as
get_acls().

Return type IAsyncResult

1.6. API Documentation 19

kazoo Documentation, Release 2.8.0

set_acls(path, acls, version=-1)
Set the ACL for the node of the given path.

Set the ACL for the node of the given path if such a node exists and the given version matches
the version of the node.

Parameters
• path – Path for the node.
• acls – List of ACL objects to set.
• version – The expected node version that must match.

Returns The stat of the node.
Raises BadVersionError if version doesn’t match.

NoNodeError if the node doesn’t exist.

InvalidACLError if the ACL is invalid.

ZookeeperError if the server returns a non-zero error code.
New in version 0.5.

set_acls_async(path, acls, version=-1)
Set the ACL for the node of the given path. Takes the same arguments as set_acls().

Return type IAsyncResult

set(path, value, version=-1)
Set the value of a node.

If the version of the node being updated is newer than the supplied version (and the supplied
version is not -1), a BadVersionError will be raised.

This operation, if successful, will trigger all the watches on the node of the given path left by
get() API calls.

The maximum allowable size of the value is 1 MB. Values larger than this will cause a Zookeep-
erError to be raised.

Parameters
• path – Path of node.
• value – New data value.
• version – Version of node being updated, or -1.

Returns Updated ZnodeStat of the node.
Raises BadVersionError if version doesn’t match.

NoNodeError if the node doesn’t exist.

ZookeeperError if the provided value is too large.

ZookeeperError if the server returns a non-zero error code.

set_async(path, value, version=-1)
Set the value of a node. Takes the same arguments as set().

Return type IAsyncResult

transaction()
Create and return a TransactionRequest object

Creates a TransactionRequest object. A Transaction can consist of multiple operations
which can be committed as a single atomic unit. Either all of the operations will succeed or
none of them.

Returns A TransactionRequest.
Return type TransactionRequest

New in version 0.6: Requires Zookeeper 3.4+

20 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

delete(path, version=-1, recursive=False)
Delete a node.

The call will succeed if such a node exists, and the given version matches the node’s version (if
the given version is -1, the default, it matches any node’s versions).

This operation, if successful, will trigger all the watches on the node of the given path left by
exists API calls, and the watches on the parent node left by get_children API calls.

Parameters
• path – Path of node to delete.
• version – Version of node to delete, or -1 for any.
• recursive (bool) – Recursively delete node and all its children, defaults to

False.
Raises BadVersionError if version doesn’t match.

NoNodeError if the node doesn’t exist.

NotEmptyError if the node has children.

ZookeeperError if the server returns a non-zero error code.

delete_async(path, version=-1)
Asynchronously delete a node. Takes the same arguments as delete(), with the exception
of recursive.

Return type IAsyncResult

reconfig(joining, leaving, new_members, from_config=-1)
Reconfig a cluster.

This call will succeed if the cluster was reconfigured accordingly.
Parameters

• joining – a comma separated list of servers being added (see example for for-
mat) (incremental reconfiguration)

• leaving – a comma separated list of servers being removed (see example for
format) (incremental reconfiguration)

• new_members – a comma separated list of new membership (non-incremental
reconfiguration)

• from_config (int) – version of the current configuration (optional - causes
reconfiguration to throw an exception if configuration is no longer current)

Returns Tuple (value, ZnodeStat) of node.
Return type tuple

Basic Example:

zk = KazooClient()
zk.start()

first add an observer (incremental reconfiguration)
joining = 'server.100=10.0.0.10:2889:3888:observer;0.0.0.0:2181'
data, _ = zk.reconfig(
joining=joining, leaving=None, new_members=None)

wait and then remove it (just by using its id) (incremental)
data, _ = zk.reconfig(joining=None, leaving='100',

new_members=None)

now do a full change of the cluster (non-incremental)
new = [
'server.100=10.0.0.10:2889:3888:observer;0.0.0.0:2181',
'server.100=10.0.0.11:2889:3888:observer;0.0.0.0:2181',

(continues on next page)

1.6. API Documentation 21

kazoo Documentation, Release 2.8.0

(continued from previous page)

'server.100=10.0.0.12:2889:3888:observer;0.0.0.0:2181',
]
data, _ = zk.reconfig(
joining=None, leaving=None, new_members=','.join(new))

zk.stop()

Raises UnimplementedError if not supported.

NewConfigNoQuorumError if no quorum of new config is connected and up-
to-date with the leader of last commmitted config - try invoking reconfiguration after
new servers are connected and synced.

ReconfigInProcessError if another reconfiguration is in progress.

BadVersionError if version doesn’t match.

BadArgumentsError if any of the given lists of servers has a bad format.

ZookeeperError if the server returns a non-zero error code.

reconfig_async(joining, leaving, new_members, from_config)
Asynchronously reconfig a cluster. Takes the same arguments as reconfig().

Return type IAsyncResult

class kazoo.client.TransactionRequest(client)
A Zookeeper Transaction Request

A Transaction provides a builder object that can be used to construct and commit an atomic set of
operations. The transaction must be committed before its sent.

Transactions are not thread-safe and should not be accessed from multiple threads at once.

Note: The committed attribute only indicates whether this transaction has been sent to Zookeeper
and is used to prevent duplicate commits of the same transaction. The result should be checked to
determine if the transaction executed as desired.

New in version 0.6: Requires Zookeeper 3.4+

create(path, value=”, acl=None, ephemeral=False, sequence=False)
Add a create ZNode to the transaction. Takes the same arguments as KazooClient.
create(), with the exception of makepath.

Returns None

delete(path, version=-1)
Add a delete ZNode to the transaction. Takes the same arguments as KazooClient.
delete(), with the exception of recursive.

set_data(path, value, version=-1)
Add a set ZNode value to the transaction. Takes the same arguments as KazooClient.
set().

check(path, version)
Add a Check Version to the transaction.

This command will fail and abort a transaction if the path does not match the specified version.

commit_async()
Commit the transaction asynchronously.

Return type IAsyncResult

22 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

commit()
Commit the transaction.

Returns A list of the results for each operation in the transaction.

1.6.2 kazoo.exceptions

Kazoo Exceptions

Public API

exception kazoo.exceptions.KazooException
Base Kazoo exception that all other kazoo library exceptions inherit from

exception kazoo.exceptions.ZookeeperError
Base Zookeeper exception for errors originating from the Zookeeper server

exception kazoo.exceptions.AuthFailedError

exception kazoo.exceptions.BadVersionError

exception kazoo.exceptions.ConfigurationError
Raised if the configuration arguments to an object are invalid

exception kazoo.exceptions.InvalidACLError

exception kazoo.exceptions.LockTimeout
Raised if failed to acquire a lock.

New in version 1.1.

exception kazoo.exceptions.NoChildrenForEphemeralsError

exception kazoo.exceptions.NodeExistsError

exception kazoo.exceptions.NoNodeError

exception kazoo.exceptions.NotEmptyError

Private API

exception kazoo.exceptions.APIError

exception kazoo.exceptions.BadArgumentsError

exception kazoo.exceptions.CancelledError
Raised when a process is cancelled by another thread

exception kazoo.exceptions.ConnectionDropped
Internal error for jumping out of loops

exception kazoo.exceptions.ConnectionClosedError
Connection is closed

exception kazoo.exceptions.ConnectionLoss

exception kazoo.exceptions.DataInconsistency

exception kazoo.exceptions.MarshallingError

exception kazoo.exceptions.NoAuthError

1.6. API Documentation 23

kazoo Documentation, Release 2.8.0

exception kazoo.exceptions.NotReadOnlyCallError
An API call that is not read-only was used while connected to a read-only server

exception kazoo.exceptions.InvalidCallbackError

exception kazoo.exceptions.OperationTimeoutError

exception kazoo.exceptions.RolledBackError

exception kazoo.exceptions.RuntimeInconsistency

exception kazoo.exceptions.SessionExpiredError

exception kazoo.exceptions.SessionMovedError

exception kazoo.exceptions.SystemZookeeperError

exception kazoo.exceptions.UnimplementedError

exception kazoo.exceptions.WriterNotClosedException
Raised if the writer is unable to stop closing when requested.

New in version 1.2.

exception kazoo.exceptions.ZookeeperStoppedError
Raised when the kazoo client stopped (and thus not connected)

1.6.3 kazoo.handlers.gevent

A gevent based handler.

Public API

class kazoo.handlers.gevent.SequentialGeventHandler
Gevent handler for sequentially executing callbacks.

This handler executes callbacks in a sequential manner. A queue is created for each of the callback
events, so that each type of event has its callback type run sequentially.

Each queue type has a greenlet worker that pulls the callback event off the queue and runs it in the
order the client sees it.

This split helps ensure that watch callbacks won’t block session re-establishment should the connec-
tion be lost during a Zookeeper client call.

Watch callbacks should avoid blocking behavior as the next callback of that type won’t be run until
it completes. If you need to block, spawn a new greenlet and return immediately so callbacks can
proceed.

async_result()
Create a AsyncResult instance

The AsyncResult instance will have its completion callbacks executed in the thread the
SequentialGeventHandler is created in (which should be the gevent/main thread).

dispatch_callback(callback)
Dispatch to the callback object

The callback is put on separate queues to run depending on the type as documented for the
SequentialGeventHandler.

24 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

event_object()
Create an appropriate Event object

lock_object()
Create an appropriate Lock object

queue_empty
alias of Queue.Empty

queue_impl
alias of gevent._gevent_cqueue.Queue

rlock_object()
Create an appropriate RLock object

static sleep_func(seconds=0, ref=True)
Put the current greenlet to sleep for at least seconds.

seconds may be specified as an integer, or a float if fractional seconds are desired.

Tip: In the current implementation, a value of 0 (the default) means to yield execution to any
other runnable greenlets, but this greenlet may be scheduled again before the event loop cycles
(in an extreme case, a greenlet that repeatedly sleeps with 0 can prevent greenlets that are ready
to do I/O from being scheduled for some (small) period of time); a value greater than 0, on the
other hand, will delay running this greenlet until the next iteration of the loop.

If ref is False, the greenlet running sleep()will not prevent gevent.wait() from exiting.

Changed in version 1.3a1: Sleeping with a value of 0 will now be bounded to approximately
block the loop for no longer than gevent.getswitchinterval().

See also:

idle()

spawn(func, *args, **kwargs)
Spawn a function to run asynchronously

start()
Start the greenlet workers.

stop()
Stop the greenlet workers and empty all queues.

exception timeout_exception(msg)

Private API

class kazoo.handlers.gevent.AsyncResult
A one-time event that stores a value or an exception.

Like Event it wakes up all the waiters when set() or set_exception() is called. Wait-
ers may receive the passed value or exception by calling get() instead of wait(). An
AsyncResult instance cannot be reset.

Important: This object is for communicating among greenlets within the same thread only! Do
not try to use it to communicate across threads.

1.6. API Documentation 25

kazoo Documentation, Release 2.8.0

To pass a value call set(). Calls to get() (those that are currently blocking as well as those made
in the future) will return the value:

>>> from gevent.event import AsyncResult
>>> result = AsyncResult()
>>> result.set(100)
>>> result.get()
100

To pass an exception call set_exception(). This will cause get() to raise that exception:

>>> result = AsyncResult()
>>> result.set_exception(RuntimeError('failure'))
>>> result.get()
Traceback (most recent call last):
...

RuntimeError: failure

AsyncResult implements __call__() and thus can be used as link() target:

>>> import gevent
>>> result = AsyncResult()
>>> gevent.spawn(lambda : 1/0).link(result)
>>> try:
... result.get()
... except ZeroDivisionError:
... print('ZeroDivisionError')
ZeroDivisionError

Note: The order and timing in which waiting greenlets are awakened is not determined. As an
implementation note, in gevent 1.1 and 1.0, waiting greenlets are awakened in a undetermined order
sometime after the current greenlet yields to the event loop. Other greenlets (those not waiting to be
awakened) may run between the current greenlet yielding and the waiting greenlets being awakened.
These details may change in the future.

Changed in version 1.1: The exact order in which waiting greenlets are awakened is not the same as
in 1.0.

Changed in version 1.1: Callbacks linked to this object are required to be hashable, and duplicates
are merged.

Changed in version 1.5a3: Waiting greenlets are now awakened in the order in which they waited.

Changed in version 1.5a3: The low-level rawlink method (most users won’t use this) now auto-
matically unlinks waiters before calling them.

cancel(self)→ bool

cancelled(self)→ bool

done(self)→ bool

exc_info
The three-tuple of exception information if set_exception() was called.

exception
Holds the exception instance passed to set_exception() if set_exception() was
called. Otherwise None.

26 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

get(self, block=True, timeout=None)
Return the stored value or raise the exception.

If this instance already holds a value or an exception, return or raise it immediately. Otherwise,
block until another greenlet calls set() or set_exception() or until the optional timeout
occurs.

When the timeout argument is present and not None, it should be a floating point number
specifying a timeout for the operation in seconds (or fractions thereof). If the timeout elapses,
the Timeout exception will be raised.

Parameters block (bool) – If set to False and this instance is not ready, immedi-
ately raise a Timeout exception.

get_nowait(self)
Return the value or raise the exception without blocking.

If this object is not yet ready , raise gevent.Timeout immediately.

ready(self)→ bool
Return true if and only if it holds a value or an exception

result(self, timeout=None)

set(self, value=None)
Store the value and wake up any waiters.

All greenlets blocking on get() or wait() are awakened. Subsequent calls to wait() and
get() will not block at all.

set_exception(self, exception, exc_info=None)
Store the exception and wake up any waiters.

All greenlets blocking on get() or wait() are awakened. Subsequent calls to wait() and
get() will not block at all.

Parameters exc_info (tuple) – If given, a standard three-tuple of type, value,
traceback as returned by sys.exc_info(). This will be used when the ex-
ception is re-raised to propagate the correct traceback.

set_result()
AsyncResult.set(self, value=None) Store the value and wake up any waiters.

All greenlets blocking on get() or wait() are awakened. Subsequent calls to
wait() and get() will not block at all.

successful(self)→ bool
Return true if and only if it is ready and holds a value

value
Holds the value passed to set() if set() was called. Otherwise, None

wait(self, timeout=None)
Block until the instance is ready.

If this instance already holds a value, it is returned immediately. If this instance already holds
an exception, None is returned immediately.

Otherwise, block until another greenlet calls set() or set_exception() (at which point
either the value or None will be returned, respectively), or until the optional timeout expires (at
which point None will also be returned).

When the timeout argument is present and not None, it should be a floating point number
specifying a timeout for the operation in seconds (or fractions thereof).

1.6. API Documentation 27

kazoo Documentation, Release 2.8.0

Note: If a timeout is given and expires, None will be returned (no timeout exception will be
raised).

1.6.4 kazoo.handlers.threading

A threading based handler.

The SequentialThreadingHandler is intended for regular Python environments that use threads.

Warning: Do not use SequentialThreadingHandler with applications using asynchronous event loops
(like gevent). Use the SequentialGeventHandler instead.

Public API

class kazoo.handlers.threading.SequentialThreadingHandler
Threading handler for sequentially executing callbacks.

This handler executes callbacks in a sequential manner. A queue is created for each of the callback
events, so that each type of event has its callback type run sequentially. These are split into two
queues, one for watch events and one for async result completion callbacks.

Each queue type has a thread worker that pulls the callback event off the queue and runs it in the
order the client sees it.

This split helps ensure that watch callbacks won’t block session re-establishment should the connec-
tion be lost during a Zookeeper client call.

Watch and completion callbacks should avoid blocking behavior as the next callback of that type
won’t be run until it completes. If you need to block, spawn a new thread and return immediately so
callbacks can proceed.

Note: Completion callbacks can block to wait on Zookeeper calls, but no other completion call-
backs will execute until the callback returns.

async_result()
Create a AsyncResult instance

dispatch_callback(callback)
Dispatch to the callback object

The callback is put on separate queues to run depending on the type as documented for the
SequentialThreadingHandler.

event_object()
Create an appropriate Event object

lock_object()
Create a lock object

queue_empty
alias of Queue.Empty

28 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

queue_impl
alias of Queue.Queue

rlock_object()
Create an appropriate RLock object

static sleep_func()
sleep(seconds)

Delay execution for a given number of seconds. The argument may be a floating point number
for subsecond precision.

start()
Start the worker threads.

stop()
Stop the worker threads and empty all queues.

timeout_exception
alias of KazooTimeoutError

Private API

class kazoo.handlers.threading.AsyncResult(handler)
A one-time event that stores a value or an exception

1.6.5 kazoo.handlers.utils

Kazoo handler helpers

Public API

kazoo.handlers.utils.capture_exceptions(async_result)
Return a new decorated function that propagates the exceptions of the wrapped function to an
async_result.

Parameters async_result – An async result implementing IAsyncResult

kazoo.handlers.utils.wrap(async_result)
Return a new decorated function that propagates the return value or exception of wrapped function
to an async_result. NOTE: Only propagates a non-None return value.

Parameters async_result – An async result implementing IAsyncResult

Private API

kazoo.handlers.utils.create_socket_pair(module, port=0)
Create socket pair.

If socket.socketpair isn’t available, we emulate it.

kazoo.handlers.utils.create_tcp_socket(module)
Create a TCP socket with the CLOEXEC flag set.

1.6. API Documentation 29

kazoo Documentation, Release 2.8.0

1.6.6 kazoo.interfaces

Kazoo Interfaces

Changed in version 1.4: The classes in this module used to be interface declarations based on zope.interface.Interface.
They were converted to normal classes and now serve as documentation only.

Public API

IHandler implementations should be created by the developer to be passed into KazooClient during instantiation
for the preferred callback handling.

If the developer needs to use objects implementing the IAsyncResult interface, the IHandler.
async_result() method must be used instead of instantiating one directly.

class kazoo.interfaces.IHandler
A Callback Handler for Zookeeper completion and watch callbacks.

This object must implement several methods responsible for determining how completion / watch
callbacks are handled as well as the method for calling IAsyncResult callback functions.

These functions are used to abstract differences between a Python threading environment and asyn-
chronous single-threaded environments like gevent. The minimum functionality needed for Kazoo
to handle these differences is encompassed in this interface.

The Handler should document how callbacks are called for:

• Zookeeper completion events

• Zookeeper watch events

name
Human readable name of the Handler interface.

timeout_exception
Exception class that should be thrown and captured if a result is not available within the given
time.

sleep_func
Appropriate sleep function that can be called with a single argument and sleep.

async_result()
Return an instance that conforms to the IAsyncResult interface appropriate for this handler

create_connection()
A socket method that implements Python’s socket.create_connection API

dispatch_callback(callback)
Dispatch to the callback object

Parameters callback – A Callback object to be called.

event_object()
Return an appropriate object that implements Python’s threading.Event API

lock_object()
Return an appropriate object that implements Python’s threading.Lock API

rlock_object()
Return an appropriate object that implements Python’s threading.RLock API

select()
A select method that implements Python’s select.select API

30 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

socket()
A socket method that implements Python’s socket.socket API

spawn(func, *args, **kwargs)
Spawn a function to run asynchronously

Parameters
• args – args to call the function with.
• kwargs – keyword args to call the function with.

This method should return immediately and execute the function with the provided args and
kwargs in an asynchronous manner.

start()
Start the handler, used for setting up the handler.

stop()
Stop the handler. Should block until the handler is safely stopped.

Private API

The IAsyncResult documents the proper implementation for providing a value that results from a Zookeeper
completion callback. Since the KazooClient returns an IAsyncResult object instead of taking a completion
callback for async functions, developers wishing to have their own callback called should use the IAsyncResult.
rawlink() method.

class kazoo.interfaces.IAsyncResult
An Async Result object that can be queried for a value that has been set asynchronously.

This object is modeled on the gevent AsyncResult object.

The implementation must account for the fact that the set() and set_exception() methods
will be called from within the Zookeeper thread which may require extra care under asynchronous
environments.

value
Holds the value passed to set() if set() was called. Otherwise None.

exception
Holds the exception instance passed to set_exception() if set_exception() was
called. Otherwise None.

get(block=True, timeout=None)
Return the stored value or raise the exception

Parameters
• block (bool) – Whether this method should block or return immediately.
• timeout (float) – How long to wait for a value when block is True.

If this instance already holds a value / an exception, return / raise it immediately. Otherwise,
block until set() or set_exception() has been called or until the optional timeout oc-
curs.

get_nowait()
Return the value or raise the exception without blocking.

If nothing is available, raise the Timeout exception class on the associated IHandler interface.

rawlink(callback)
Register a callback to call when a value or an exception is set

Parameters callback (func) – A callback function to call after set() or
set_exception() has been called. This function will be passed a single ar-
gument, this instance.

1.6. API Documentation 31

kazoo Documentation, Release 2.8.0

ready()
Return True if and only if it holds a value or an exception

set(value=None)
Store the value. Wake up the waiters.

Parameters value – Value to store as the result.
Any waiters blocking on get() or wait() are woken up. Sequential calls to wait() and
get() will not block at all.

set_exception(exception)
Store the exception. Wake up the waiters.

Parameters exception – Exception to raise when fetching the value.
Any waiters blocking on get() or wait() are woken up. Sequential calls to wait() and
get() will not block at all.

successful()
Return True if and only if it is ready and holds a value

unlink(callback)
Remove the callback set by rawlink()

Parameters callback (func) – A callback function to remove.

wait(timeout=None)
Block until the instance is ready.

Parameters timeout (float) – How long to wait for a value when block is True.
If this instance already holds a value / an exception, return / raise it immediately. Otherwise,
block until set() or set_exception() has been called or until the optional timeout oc-
curs.

1.6.7 kazoo.protocol.states

Kazoo State and Event objects

Public API

class kazoo.protocol.states.EventType
Zookeeper Event

Represents a Zookeeper event. Events trigger watch functions which will receive a EventType
attribute as their event argument.

CREATED
A node has been created.

DELETED
A node has been deleted.

CHANGED
The data for a node has changed.

CHILD
The children under a node have changed (a child was added or removed). This event does not
indicate the data for a child node has changed, which must have its own watch established.

NONE
The connection state has been altered.

32 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

class kazoo.protocol.states.KazooState
High level connection state values

States inspired by Netflix Curator.

SUSPENDED
The connection has been lost but may be recovered. We should operate in a “safe mode” until
then. When the connection is resumed, it may be discovered that the session expired. A client
should not assume that locks are valid during this time.

CONNECTED
The connection is alive and well.

LOST
The connection has been confirmed dead. Any ephemeral nodes will need to be recreated upon
re-establishing a connection. If locks were acquired or recipes using ephemeral nodes are in
use, they can be considered lost as well.

class kazoo.protocol.states.KeeperState
Zookeeper State

Represents the Zookeeper state. Watch functions will receive a KeeperState attribute as their
state argument.

AUTH_FAILED
Authentication has failed, this is an unrecoverable error.

CONNECTED
Zookeeper is connected.

CONNECTED_RO
Zookeeper is connected in read-only state.

CONNECTING
Zookeeper is currently attempting to establish a connection.

EXPIRED_SESSION
The prior session was invalid, all prior ephemeral nodes are gone.

class kazoo.protocol.states.WatchedEvent
A change on ZooKeeper that a Watcher is able to respond to.

The WatchedEvent includes exactly what happened, the current state of ZooKeeper, and the path
of the node that was involved in the event. An instance of WatchedEvent will be passed to
registered watch functions.

type
A EventType attribute indicating the event type.

state
A KeeperState attribute indicating the Zookeeper state.

path
The path of the node for the watch event.

class kazoo.protocol.states.ZnodeStat
A ZnodeStat structure with convenience properties

When getting the value of a znode from Zookeeper, the properties for the znode known as a “Stat
structure” will be retrieved. The ZnodeStat object provides access to the standard Stat properties
and additional properties that are more readable and use Python time semantics (seconds since epoch
instead of ms).

1.6. API Documentation 33

kazoo Documentation, Release 2.8.0

Note: The original Zookeeper Stat name is in parens next to the name when it differs from the
convenience attribute. These are not functions, just attributes.

creation_transaction_id(czxid)
The transaction id of the change that caused this znode to be created.

last_modified_transaction_id(mzxid)
The transaction id of the change that last modified this znode.

created(ctime)
The time in seconds from epoch when this znode was created. (ctime is in milliseconds)

last_modified(mtime)
The time in seconds from epoch when this znode was last modified. (mtime is in milliseconds)

version
The number of changes to the data of this znode.

acl_version(aversion)
The number of changes to the ACL of this znode.

owner_session_id(ephemeralOwner)
The session id of the owner of this znode if the znode is an ephemeral node. If it is not an
ephemeral node, it will be None. (ephemeralOwner will be 0 if it is not ephemeral)

data_length(dataLength)
The length of the data field of this znode.

children_count(numChildren)
The number of children of this znode.

Private API

class kazoo.protocol.states.Callback
A callback that is handed to a handler for dispatch

Parameters

• type – Type of the callback, currently is only ‘watch’

• func – Callback function

• args – Argument list for the callback function

1.6.8 kazoo.recipe.barrier

Zookeeper Barriers

Maintainer None

Status Unknown

Public API

class kazoo.recipe.barrier.Barrier(client, path)
Kazoo Barrier

34 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

Implements a barrier to block processing of a set of nodes until a condition is met at which point the
nodes will be allowed to proceed. The barrier is in place if its node exists.

Warning: The wait() function does not handle connection loss and may raise
ConnectionLossException if the connection is lost while waiting.

__init__(client, path)
Create a Kazoo Barrier

Parameters
• client – A KazooClient instance.
• path – The barrier path to use.

create()
Establish the barrier if it doesn’t exist already

remove()
Remove the barrier

Returns Whether the barrier actually needed to be removed.
Return type bool

wait(timeout=None)
Wait on the barrier to be cleared

Returns True if the barrier has been cleared, otherwise False.
Return type bool

class kazoo.recipe.barrier.DoubleBarrier(client, path, num_clients, identi-
fier=None)

Kazoo Double Barrier

Double barriers are used to synchronize the beginning and end of a distributed task. The barrier
blocks when entering it until all the members have joined, and blocks when leaving until all the
members have left.

Note: You should register a listener for session loss as the process will no longer be part of the
barrier once the session is gone. Connection losses will be retried with the default retry policy.

__init__(client, path, num_clients, identifier=None)
Create a Double Barrier

Parameters
• client – A KazooClient instance.
• path – The barrier path to use.
• num_clients (int) – How many clients must enter the barrier to proceed.
• identifier – An identifier to use for this member of the barrier when partici-

pating. Defaults to the hostname + process id.

enter()
Enter the barrier, blocks until all nodes have entered

leave()
Leave the barrier, blocks until all nodes have left

1.6.9 kazoo.recipe.cache

TreeCache

1.6. API Documentation 35

kazoo Documentation, Release 2.8.0

Maintainer Jiangge Zhang <tonyseek@gmail.com>

Maintainer Haochuan Guo <guohaochuan@gmail.com>

Maintainer Tianwen Zhang <mail2tevin@gmail.com>

Status Alpha

A port of the Apache Curator’s TreeCache recipe. It builds an in-memory cache of a subtree in ZooKeeper and keeps
it up-to-date.

See also: http://curator.apache.org/curator-recipes/tree-cache.html

Public API

class kazoo.recipe.cache.TreeCache(client, path)
The cache of a ZooKeeper subtree.

Parameters

• client – A KazooClient instance.

• path – The root path of subtree.

start()
Starts the cache.

The cache is not started automatically. You must call this method.

After a cache started, all changes of subtree will be synchronized from the ZooKeeper server.
Events will be fired for those activity.

Don’t forget to call close() if a tree was started and you don’t need it anymore, or you will
leak the memory of cached nodes, even if you have released all references to the TreeCache
instance. Because there are so many callbacks that have been registered to the Kazoo client.

See also listen().

Note: This method is not thread safe.

close()
Closes the cache.

A closed cache was detached from ZooKeeper’s changes. And all nodes will be invalidated.

Once a tree cache was closed, it could not be started again. You should only close a tree cache
while you want to recycle it.

Note: This method is not thread safe.

listen(listener)
Registers a function to listen the cache events.

The cache events are changes of local data. They are delivered from watching notifications in
ZooKeeper session.

This method can be use as a decorator.
Parameters listener – A callable object which accepting a TreeEvent instance

as its argument.

36 Chapter 1. Reference Docs

mailto:tonyseek@gmail.com
mailto:guohaochuan@gmail.com
mailto:mail2tevin@gmail.com
http://curator.apache.org/curator-recipes/tree-cache.html

kazoo Documentation, Release 2.8.0

listen_fault(listener)
Registers a function to listen the exceptions.

It is possible to meet some exceptions during the cache running. You could specific handlers
for them.

This method can be use as a decorator.
Parameters listener – A callable object which accepting an exception as its argu-

ment.

get_data(path, default=None)
Gets data of a node from cache.

Parameters
• path – The absolute path string.
• default – The default value which will be returned if the node does not exist.

Raises ValueError – If the path is outside of this subtree.
Returns A NodeData instance.

get_children(path, default=None)
Gets node children list from in-memory snapshot.

Parameters
• path – The absolute path string.
• default – The default value which will be returned if the node does not exist.

Raises ValueError – If the path is outside of this subtree.
Returns The frozenset which including children names.

class kazoo.recipe.cache.TreeEvent
Bases: tuple

The immutable event tuple of cache.

event_data
A NodeData instance.

event_type
An enumerate integer to indicate event type.

classmethod make(event_type, event_data)
Creates a new TreeEvent tuple.

Returns A TreeEvent instance.

class kazoo.recipe.cache.NodeData
Bases: tuple

The immutable node data tuple of cache.

data
The bytes data of current node.

classmethod make(path, data, stat)
Creates a new NodeData tuple.

Returns A NodeData instance.

path
The absolute path string of current node.

stat
The stat information of current node.

1.6. API Documentation 37

kazoo Documentation, Release 2.8.0

1.6.10 kazoo.recipe.counter

Zookeeper Counter

Maintainer None

Status Unknown

New in version 0.7: The Counter class.

Public API

class kazoo.recipe.counter.Counter(client, path, default=0, sup-
port_curator=False)

Kazoo Counter

A shared counter of either int or float values. Changes to the counter are done atomically. The
general retry policy is used to retry operations if concurrent changes are detected.

The data is marshaled using repr(value) and converted back using type(counter.default)(value) both
using an ascii encoding. As such other data types might be used for the counter value.

If you would like to support clients updating the same znode path using either kazoo’s counter recipe
or curator’s SharedCount recipe, you will need to enable the support_curator flag. This flag limits
support to integers only and does not use ascii encoding as described above.

Counter changes can raise BadVersionError if the retry policy wasn’t able to apply a change.

Example usage:

zk = KazooClient()
zk.start()
counter = zk.Counter("/int")
counter += 2
counter -= 1
counter.value == 1
counter.pre_value == 2
counter.post_value == 1

counter = zk.Counter("/float", default=1.0)
counter += 2.0
counter.value == 3.0
counter.pre_value == 1.0
counter.post_value == 3.0

counter = zk.Counter("/curator", support_curator=True)
counter += 2
counter -= 1
counter.value == 1
counter.pre_value == 2
counter.post_value == 1

__init__(client, path, default=0, support_curator=False)
Create a Kazoo Counter

Parameters
• client – A KazooClient instance.
• path – The counter path to use.
• default – The default value to use for new counter paths.

38 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

• support_curator – Enable if support for curator’s SharedCount recipe is de-
sired.

__add__(value)
Add value to counter.

__sub__(value)
Subtract value from counter.

1.6.11 kazoo.recipe.election

ZooKeeper Leader Elections

Maintainer None

Status Unknown

Public API

class kazoo.recipe.election.Election(client, path, identifier=None)
Kazoo Basic Leader Election

Example usage with a KazooClient instance:

zk = KazooClient()
zk.start()
election = zk.Election("/electionpath", "my-identifier")

blocks until the election is won, then calls
my_leader_function()
election.run(my_leader_function)

__init__(client, path, identifier=None)
Create a Kazoo Leader Election

Parameters
• client – A KazooClient instance.
• path – The election path to use.
• identifier – Name to use for this lock contender. This can be useful for

querying to see who the current lock contenders are.

cancel()
Cancel participation in the election

Note: If this contender has already been elected leader, this method will not interrupt the
leadership function.

contenders()
Return an ordered list of the current contenders in the election

Note: If the contenders did not set an identifier, it will appear as a blank string.

run(func, *args, **kwargs)
Contend for the leadership

1.6. API Documentation 39

kazoo Documentation, Release 2.8.0

This call will block until either this contender is cancelled or this contender wins the election
and the provided leadership function subsequently returns or fails.

Parameters
• func – A function to be called if/when the election is won.
• args – Arguments to leadership function.
• kwargs – Keyword arguments to leadership function.

1.6.12 kazoo.recipe.lease

Zookeeper lease implementations

Maintainer Lars Albertsson <lars.albertsson@gmail.com>

Maintainer Jyrki Pulliainen <jyrki@spotify.com>

Status Beta

Public API

class kazoo.recipe.lease.NonBlockingLease(client, path, duration, identi-
fier=None, utcnow=<built-in
method utcnow of type object>)

Exclusive lease that does not block.

An exclusive lease ensures that only one client at a time owns the lease. The client may renew the
lease without losing it by obtaining a new lease with the same path and same identity. The lease
object evaluates to True if the lease was obtained.

A common use case is a situation where a task should only run on a single host. In this case, the
clients that did not obtain the lease should exit without performing the protected task.

The lease stores time stamps using client clocks, and will therefore only work if client clocks are
roughly synchronised. It uses UTC, and works across time zones and daylight savings.

Example usage: with a KazooClient instance:

zk = KazooClient()
zk.start()
Hold lease over an hour in order to keep job on same machine,
with failover if it dies.
lease = zk.NonBlockingLease(

"/db_leases/hourly_cleanup", datetime.timedelta(minutes = 70),
identifier = "DB hourly cleanup on " + socket.gethostname())

if lease:
do_hourly_database_cleanup()

__init__(client, path, duration, identifier=None, utcnow=<built-in method utcnow of type
object>)

Create a non-blocking lease.
Parameters

• client – A KazooClient instance.
• path – The lease path to use.
• duration – Duration during which the lease is reserved. A timedelta in-

stance.
• identifier – Unique name to use for this lease holder. Reuse in order to renew

the lease. Defaults to socket.gethostname().

40 Chapter 1. Reference Docs

mailto:lars.albertsson@gmail.com
mailto:jyrki@spotify.com

kazoo Documentation, Release 2.8.0

• utcnow – Clock function, by default returning datetime.datetime.
utcnow(). Used for testing.

class kazoo.recipe.lease.MultiNonBlockingLease(client, count, path, du-
ration, identifier=None,
utcnow=<built-in method
utcnow of type object>)

Exclusive lease for multiple clients.

This type of lease is useful when a limited set of hosts should run a particular task. It will attempt to
obtain leases trying a sequence of ZooKeeper lease paths.

Parameters

• client – A KazooClient instance.

• count – Number of host leases allowed.

• path – ZooKeeper path under which lease files are stored.

• duration – Duration during which the lease is reserved. A timedelta instance.

• identifier –

Unique name to use for this lease holder. Reuse in order to renew the lease.

Defaults do socket.gethostname().

• utcnow – Clock function, by default returning datetime.datetime.
utcnow(). Used for testing.

__init__(client, count, path, duration, identifier=None, utcnow=<built-in method utcnow
of type object>)

x.__init__(. . .) initializes x; see help(type(x)) for signature

1.6.13 kazoo.recipe.lock

Zookeeper Locking Implementations

Maintainer Ben Bangert <ben@groovie.org>

Status Production

Error Handling

It’s highly recommended to add a state listener with add_listener() and watch for LOST and SUSPENDED state
changes and re-act appropriately. In the event that a LOST state occurs, its certain that the lock and/or the lease has
been lost.

Public API

class kazoo.recipe.lock.Lock(client, path, identifier=None, extra_lock_patterns=())
Kazoo Lock

Example usage with a KazooClient instance:

1.6. API Documentation 41

mailto:ben@groovie.org

kazoo Documentation, Release 2.8.0

zk = KazooClient()
zk.start()
lock = zk.Lock("/lockpath", "my-identifier")
with lock: # blocks waiting for lock acquisition

do something with the lock

Note: This lock is not re-entrant. Repeated calls after already acquired will block.

This is an exclusive lock. For a read/write lock, see WriteLock and ReadLock.

__init__(client, path, identifier=None, extra_lock_patterns=())
Create a Kazoo lock.

Parameters
• client – A KazooClient instance.
• path – The lock path to use.
• identifier – Name to use for this lock contender. This can be useful for

querying to see who the current lock contenders are.
• extra_lock_patterns – Strings that will be used to identify other znode in

the path that should be considered contenders for this lock. Use this for cross-
implementation compatibility.

New in version 2.7.1: The extra_lock_patterns option.

acquire(blocking=True, timeout=None, ephemeral=True)
Acquire the lock. By defaults blocks and waits forever.

Parameters
• blocking (bool) – Block until lock is obtained or return immediately.
• timeout (float or None) – Don’t wait forever to acquire the lock.
• ephemeral (bool) – Don’t use ephemeral znode for the lock.

Returns Was the lock acquired?
Return type bool
Raises LockTimeout if the lock wasn’t acquired within timeout seconds.

Warning: When ephemeral is set to False session expiration will not release the lock
and must be handled separately.

New in version 1.1: The timeout option.

New in version 2.4.1: The ephemeral option.

cancel()
Cancel a pending lock acquire.

contenders()
Return an ordered list of the current contenders for the lock.

Note: If the contenders did not set an identifier, it will appear as a blank string.

release()
Release the lock immediately.

class kazoo.recipe.lock.ReadLock(client, path, identifier=None, ex-
tra_lock_patterns=())

Kazoo Read Lock

Example usage with a KazooClient instance:

42 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

zk = KazooClient()
zk.start()
lock = zk.ReadLock("/lockpath", "my-identifier")
with lock: # blocks waiting for outstanding writers

do something with the lock

The lock path passed to WriteLock and ReadLock must match for them to communicate. The read
lock blocks if it is held by any writers, but multiple readers may hold the lock.

Note: This lock is not re-entrant. Repeated calls after already acquired will block.

This is the read-side of a shared lock. See Lock for a standard exclusive lock and WriteLock for
the write-side of a shared lock.

__init__(client, path, identifier=None, extra_lock_patterns=())
Create a Kazoo lock.

Parameters
• client – A KazooClient instance.
• path – The lock path to use.
• identifier – Name to use for this lock contender. This can be useful for

querying to see who the current lock contenders are.
• extra_lock_patterns – Strings that will be used to identify other znode in

the path that should be considered contenders for this lock. Use this for cross-
implementation compatibility.

New in version 2.7.1: The extra_lock_patterns option.

acquire(blocking=True, timeout=None, ephemeral=True)
Acquire the lock. By defaults blocks and waits forever.

Parameters
• blocking (bool) – Block until lock is obtained or return immediately.
• timeout (float or None) – Don’t wait forever to acquire the lock.
• ephemeral (bool) – Don’t use ephemeral znode for the lock.

Returns Was the lock acquired?
Return type bool
Raises LockTimeout if the lock wasn’t acquired within timeout seconds.

Warning: When ephemeral is set to False session expiration will not release the lock
and must be handled separately.

New in version 1.1: The timeout option.

New in version 2.4.1: The ephemeral option.

cancel()
Cancel a pending lock acquire.

contenders()
Return an ordered list of the current contenders for the lock.

Note: If the contenders did not set an identifier, it will appear as a blank string.

release()
Release the lock immediately.

1.6. API Documentation 43

kazoo Documentation, Release 2.8.0

class kazoo.recipe.lock.WriteLock(client, path, identifier=None, ex-
tra_lock_patterns=())

Kazoo Write Lock

Example usage with a KazooClient instance:

zk = KazooClient()
zk.start()
lock = zk.WriteLock("/lockpath", "my-identifier")
with lock: # blocks waiting for lock acquisition

do something with the lock

The lock path passed to WriteLock and ReadLock must match for them to communicate. The write
lock can not be acquired if it is held by any readers or writers.

Note: This lock is not re-entrant. Repeated calls after already acquired will block.

This is the write-side of a shared lock. See Lock for a standard exclusive lock and ReadLock for
the read-side of a shared lock.

__init__(client, path, identifier=None, extra_lock_patterns=())
Create a Kazoo lock.

Parameters
• client – A KazooClient instance.
• path – The lock path to use.
• identifier – Name to use for this lock contender. This can be useful for

querying to see who the current lock contenders are.
• extra_lock_patterns – Strings that will be used to identify other znode in

the path that should be considered contenders for this lock. Use this for cross-
implementation compatibility.

New in version 2.7.1: The extra_lock_patterns option.

acquire(blocking=True, timeout=None, ephemeral=True)
Acquire the lock. By defaults blocks and waits forever.

Parameters
• blocking (bool) – Block until lock is obtained or return immediately.
• timeout (float or None) – Don’t wait forever to acquire the lock.
• ephemeral (bool) – Don’t use ephemeral znode for the lock.

Returns Was the lock acquired?
Return type bool
Raises LockTimeout if the lock wasn’t acquired within timeout seconds.

Warning: When ephemeral is set to False session expiration will not release the lock
and must be handled separately.

New in version 1.1: The timeout option.

New in version 2.4.1: The ephemeral option.

cancel()
Cancel a pending lock acquire.

contenders()
Return an ordered list of the current contenders for the lock.

Note: If the contenders did not set an identifier, it will appear as a blank string.

44 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

release()
Release the lock immediately.

class kazoo.recipe.lock.Semaphore(client, path, identifier=None, max_leases=1)
A Zookeeper-based Semaphore

This synchronization primitive operates in the same manner as the Python threading version only
uses the concept of leases to indicate how many available leases are available for the lock rather than
counting.

Note: This lock is not meant to be re-entrant.

Example:

zk = KazooClient()
semaphore = zk.Semaphore("/leasepath", "my-identifier")
with semaphore: # blocks waiting for lock acquisition

do something with the semaphore

Warning: This class stores the allowed max_leases as the data on the top-level semaphore
node. The stored value is checked once against the max_leases of each instance. This check
is performed when acquire is called the first time. The semaphore node needs to be deleted to
change the allowed leases.

New in version 0.6: The Semaphore class.

New in version 1.1: The max_leases check.

__init__(client, path, identifier=None, max_leases=1)
Create a Kazoo Lock

Parameters
• client – A KazooClient instance.
• path – The semaphore path to use.
• identifier – Name to use for this lock contender. This can be useful for

querying to see who the current lock contenders are.
• max_leases – The maximum amount of leases available for the semaphore.

acquire(blocking=True, timeout=None)
Acquire the semaphore. By defaults blocks and waits forever.

Parameters
• blocking (bool) – Block until semaphore is obtained or return immediately.
• timeout (float or None) – Don’t wait forever to acquire the semaphore.

Returns Was the semaphore acquired?
Return type bool
Raises ValueError if the max_leases value doesn’t match the stored value.

LockTimeout if the semaphore wasn’t acquired within timeout seconds.
New in version 1.1: The blocking, timeout arguments and the max_leases check.

cancel()
Cancel a pending semaphore acquire.

lease_holders()
Return an unordered list of the current lease holders.

Note: If the lease holder did not set an identifier, it will appear as a blank string.

1.6. API Documentation 45

kazoo Documentation, Release 2.8.0

release()
Release the lease immediately.

1.6.14 kazoo.recipe.partitioner

Zookeeper Partitioner Implementation

Maintainer None

Status Unknown

SetPartitioner implements a partitioning scheme using Zookeeper for dividing up resources amongst members
of a party.

This is useful when there is a set of resources that should only be accessed by a single process at a time that multiple
processes across a cluster might want to divide up.

Example Use-Case

• Multiple workers across a cluster need to divide up a list of queues so that no two workers own the same queue.

Public API

class kazoo.recipe.partitioner.SetPartitioner(client, path, set, par-
tition_func=None,
identifier=None,
time_boundary=30,
max_reaction_time=1,
state_change_event=None)

Partitions a set amongst members of a party

This class will partition a set amongst members of a party such that each member will be given zero
or more items of the set and each set item will be given to a single member. When new members
enter or leave the party, the set will be re-partitioned amongst the members.

When the SetPartitioner enters the FAILURE state, it is unrecoverable and a new
SetPartitioner should be created.

Example:

from kazoo.client import KazooClient
client = KazooClient()
client.start()

qp = client.SetPartitioner(
path='/work_queues', set=('queue-1', 'queue-2', 'queue-3'))

while 1:
if qp.failed:

raise Exception("Lost or unable to acquire partition")
elif qp.release:

qp.release_set()
elif qp.acquired:

for partition in qp:
Do something with each partition

elif qp.allocating:
qp.wait_for_acquire()

46 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

State Transitions

When created, the SetPartitioner enters the PartitionState.ALLOCATING state.

ALLOCATING -> ACQUIRED

Set was partitioned successfully, the partition list assigned is accessible via list/iter methods
or calling list() on the SetPartitioner instance.

ALLOCATING -> FAILURE

Allocating the set failed either due to a Zookeeper session expiration, or failure to acquire
the items of the set within the timeout period.

ACQUIRED -> RELEASE

The members of the party have changed, and the set needs to be repartitioned.
SetPartitioner.release() should be called as soon as possible.

ACQUIRED -> FAILURE

The current partition was lost due to a Zookeeper session expiration.

RELEASE -> ALLOCATING

The current partition was released and is being re-allocated.

__init__(client, path, set, partition_func=None, identifier=None, time_boundary=30,
max_reaction_time=1, state_change_event=None)

Create a SetPartitioner instance
Parameters

• client – A KazooClient instance.
• path – The partition path to use.
• set – The set of items to partition.
• partition_func – A function to use to decide how to partition the set.
• identifier – An identifier to use for this member of the party when partici-

pating. Defaults to the hostname + process id.
• time_boundary – How long the party members must be stable before alloca-

tion can complete.
• max_reaction_time – Maximum reaction time for party members change.
• state_change_event – An optional Event object that will be set on every

state change.

acquired
Corresponds to the PartitionState.ACQUIRED state

allocating
Corresponds to the PartitionState.ALLOCATING state

failed
Corresponds to the PartitionState.FAILURE state

finish()
Call to release the set and leave the party

release
Corresponds to the PartitionState.RELEASE state

release_set()
Call to release the set

This method begins the step of allocating once the set has been released.

1.6. API Documentation 47

kazoo Documentation, Release 2.8.0

wait_for_acquire(timeout=30)
Wait for the set to be partitioned and acquired

Parameters timeout (int) – How long to wait before returning.

class kazoo.recipe.partitioner.PartitionState
High level partition state values

ALLOCATING
The set needs to be partitioned, and may require an existing partition set to be released before
acquiring a new partition of the set.

ACQUIRED
The set has been partitioned and acquired.

RELEASE
The set needs to be repartitioned, and the current partitions must be released before a new
allocation can be made.

FAILURE
The set partition has failed. This occurs when the maximum time to partition the set is ex-
ceeded or the Zookeeper session is lost. The partitioner is unusable after this state and must be
recreated.

1.6.15 kazoo.recipe.party

Party

Maintainer Ben Bangert <ben@groovie.org>

Status Production

A Zookeeper pool of party members. The Party object can be used for determining members of a party.

Public API

class kazoo.recipe.party.Party(client, path, identifier=None)
Simple pool of participating processes

__init__(client, path, identifier=None)
Parameters

• client – A KazooClient instance.
• path – The party path to use.
• identifier – An identifier to use for this member of the party when partici-

pating.

__iter__()
Get a list of participating clients’ data values

__len__()
Return a count of participating clients

join()
Join the party

leave()
Leave the party

class kazoo.recipe.party.ShallowParty(client, path, identifier=None)
Simple shallow pool of participating processes

48 Chapter 1. Reference Docs

mailto:ben@groovie.org

kazoo Documentation, Release 2.8.0

This differs from the Party as the identifier is used in the name of the party node itself, rather
than the data. This places some restrictions on the length as it must be a valid Zookeeper node (an
alphanumeric string), but reduces the overhead of getting a list of participants to a single Zookeeper
call.

__init__(client, path, identifier=None)
Parameters

• client – A KazooClient instance.
• path – The party path to use.
• identifier – An identifier to use for this member of the party when partici-

pating.

__iter__()
Get a list of participating clients’ identifiers

__len__()
Return a count of participating clients

join()
Join the party

leave()
Leave the party

1.6.16 kazoo.recipe.queue

Zookeeper based queue implementations.

Maintainer None

Status Possibly Buggy

Note: This queue was reported to cause memory leaks over long running periods. See: https://github.com/python-zk/
kazoo/issues/175

New in version 0.6: The Queue class.

New in version 1.0: The LockingQueue class.

Public API

class kazoo.recipe.queue.Queue(client, path)
A distributed queue with optional priority support.

This queue does not offer reliable consumption. An entry is removed from the queue prior to being
processed. So if an error occurs, the consumer has to re-queue the item or it will be lost.

__init__(client, path)
Parameters

• client – A KazooClient instance.
• path – The queue path to use in ZooKeeper.

__len__()
Return queue size.

get()
Get item data and remove an item from the queue.

1.6. API Documentation 49

https://github.com/python-zk/kazoo/issues/175
https://github.com/python-zk/kazoo/issues/175

kazoo Documentation, Release 2.8.0

Returns Item data or None.
Return type bytes

put(value, priority=100)
Put an item into the queue.

Parameters
• value – Byte string to put into the queue.
• priority – An optional priority as an integer with at most 3 digits. Lower

values signify higher priority.

class kazoo.recipe.queue.LockingQueue(client, path)
A distributed queue with priority and locking support.

Upon retrieving an entry from the queue, the entry gets locked with an ephemeral node (instead of
deleted). If an error occurs, this lock gets released so that others could retake the entry. This adds a
little penalty as compared to Queue implementation.

The user should call the LockingQueue.get() method first to lock and retrieve the next entry.
When finished processing the entry, a user should call the LockingQueue.consume() method
that will remove the entry from the queue.

This queue will not track connection status with ZooKeeper. If a node locks an element, then loses
connection with ZooKeeper and later reconnects, the lock will probably be removed by Zookeeper in
the meantime, but a node would still think that it holds a lock. The user should check the connection
status with Zookeeper or call LockingQueue.holds_lock() method that will check if a node
still holds the lock.

Note: LockingQueue requires ZooKeeper 3.4 or above, since it is using transactions.

__init__(client, path)
Parameters

• client – A KazooClient instance.
• path – The queue path to use in ZooKeeper.

__len__()
Returns the current length of the queue.

Returns queue size (includes locked entries count).

consume()
Removes a currently processing entry from the queue.

Returns True if element was removed successfully, False otherwise.
Return type bool

get(timeout=None)
Locks and gets an entry from the queue. If a previously got entry was not consumed, this
method will return that entry.

Parameters timeout – Maximum waiting time in seconds. If None then it will wait
untill an entry appears in the queue.

Returns A locked entry value or None if the timeout was reached.
Return type bytes

holds_lock()
Checks if a node still holds the lock.

Returns True if a node still holds the lock, False otherwise.
Return type bool

put(value, priority=100)
Put an entry into the queue.

50 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

Parameters
• value – Byte string to put into the queue.
• priority – An optional priority as an integer with at most 3 digits. Lower

values signify higher priority.

put_all(values, priority=100)
Put several entries into the queue. The action only succeeds if all entries where put into the
queue.

Parameters
• values – A list of values to put into the queue.
• priority – An optional priority as an integer with at most 3 digits. Lower

values signify higher priority.

release()
Removes the lock from currently processed item without consuming it.

Returns True if the lock was removed successfully, False otherwise.
Return type bool

1.6.17 kazoo.recipe.watchers

Higher level child and data watching API’s.

Maintainer Ben Bangert <ben@groovie.org>

Status Production

Note: DataWatch and ChildrenWatch may only handle a single function, attempts to associate a single instance with
multiple functions will result in an exception being thrown.

Public API

class kazoo.recipe.watchers.DataWatch(client, path, func=None, *args,
**kwargs)

Watches a node for data updates and calls the specified function each time it changes

The function will also be called the very first time its registered to get the data.

Returning False from the registered function will disable future data change calls. If the client
connection is closed (using the close command), the DataWatch will no longer get updates.

If the function supplied takes three arguments, then the third one will be a WatchedEvent. It will
only be set if the change to the data occurs as a result of the server notifying the watch that there has
been a change. Events like reconnection or the first call will not include an event.

If the node does not exist, then the function will be called with None for all values.

Tip: Because DataWatch can watch nodes that don’t exist, it can be used alternatively as a
higher-level Exists watcher that survives reconnections and session loss.

Example with client:

@client.DataWatch('/path/to/watch')
def my_func(data, stat):

print("Data is %s" % data)

(continues on next page)

1.6. API Documentation 51

mailto:ben@groovie.org

kazoo Documentation, Release 2.8.0

(continued from previous page)

print("Version is %s" % stat.version)

Above function is called immediately and prints

Or if you want the event object
@client.DataWatch('/path/to/watch')
def my_func(data, stat, event):

print("Data is %s" % data)
print("Version is %s" % stat.version)
print("Event is %s" % event)

Changed in version 1.2: DataWatch now ignores additional arguments that were previously passed
to it and warns that they are no longer respected.

__init__(client, path, func=None, *args, **kwargs)
Create a data watcher for a path

Parameters
• client (KazooClient) – A zookeeper client.
• path (str) – The path to watch for data changes on.
• func (callable) – Function to call initially and every time the node changes.

func will be called with a tuple, the value of the node and a ZnodeStat instance.

__call__(func)
Callable version for use as a decorator

Parameters func (callable) – Function to call initially and every time the data
changes. func will be called with a tuple, the value of the node and a ZnodeStat
instance.

class kazoo.recipe.watchers.ChildrenWatch(client, path, func=None,
allow_session_lost=True,
send_event=False)

Watches a node for children updates and calls the specified function each time it changes

The function will also be called the very first time its registered to get children.

Returning False from the registered function will disable future children change calls. If the client
connection is closed (using the close command), the ChildrenWatch will no longer get updates.

if send_event=True in __init__, then the function will always be called with second parameter,
event. Upon initial call or when recovering a lost session the event is always None. Otherwise
it’s a WatchedEvent instance.

Example with client:

@client.ChildrenWatch('/path/to/watch')
def my_func(children):

print "Children are %s" % children

Above function is called immediately and prints children

__init__(client, path, func=None, allow_session_lost=True, send_event=False)
Create a children watcher for a path

Parameters
• client (KazooClient) – A zookeeper client.
• path (str) – The path to watch for children on.
• func (callable) – Function to call initially and every time the children

change. func will be called with a single argument, the list of children.

52 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

• allow_session_lost (bool) – Whether the watch should be re-registered
if the zookeeper session is lost.

• send_event (bool) – Whether the function should be passed the event sent by
ZooKeeper or None upon initialization (see class documentation)

The path must already exist for the children watcher to run.

__call__(func)
Callable version for use as a decorator

Parameters func (callable) – Function to call initially and every time the chil-
dren change. func will be called with a single argument, the list of children.

class kazoo.recipe.watchers.PatientChildrenWatch(client, path,
time_boundary=30)

Patient Children Watch that returns values after the children of a node don’t change for a period of
time

A separate watcher for the children of a node, that ignores changes within a boundary time and sets
the result only when the boundary time has elapsed with no children changes.

Example:

watcher = PatientChildrenWatch(client, '/some/path',
time_boundary=5)

async_object = watcher.start()

Blocks until the children have not changed for time boundary
(5 in this case) seconds, returns children list and an
async_result that will be set if the children change in the
future
children, child_async = async_object.get()

Note: This Watch is different from DataWatch and ChildrenWatch as it only returns once,
does not take a function that is called, and provides an IAsyncResult object that can be checked
to see if the children have changed later.

__init__(client, path, time_boundary=30)
x.__init__(. . .) initializes x; see help(type(x)) for signature

start()
Begin the watching process asynchronously

Returns An IAsyncResult instance that will be set when no change has occurred
to the children for time boundary seconds.

1.6.18 kazoo.retry

Public API

class kazoo.retry.KazooRetry(max_tries=1, delay=0.1, backoff=2, max_jitter=0.4,
max_delay=60.0, ignore_expire=True,
sleep_func=<built-in function sleep>, deadline=None,
interrupt=None)

Helper for retrying a method in the face of retry-able exceptions

__init__(max_tries=1, delay=0.1, backoff=2, max_jitter=0.4, max_delay=60.0, ig-
nore_expire=True, sleep_func=<built-in function sleep>, deadline=None, inter-
rupt=None)

1.6. API Documentation 53

kazoo Documentation, Release 2.8.0

Create a KazooRetry instance for retrying function calls.
Parameters

• max_tries – How many times to retry the command. -1 means infinite tries.
• delay – Initial delay between retry attempts.
• backoff – Backoff multiplier between retry attempts. Defaults to 2 for expo-

nential backoff.
• max_jitter – Percentage of jitter to apply to each retry’s delay to ensure all

clients to do not hammer the server at the same time. Between 0.0 and 1.0.
• max_delay – Maximum delay in seconds, regardless of other backoff settings.

Defaults to one minute.
• ignore_expire – Whether a session expiration should be ignored and treated

as a retry-able command.
• interrupt – Function that will be called with no args that may return True if

the retry should be ceased immediately. This will be called no more than every
0.1 seconds during a wait between retries.

__call__(func, *args, **kwargs)
Call a function with arguments until it completes without throwing a Kazoo exception

Parameters
• func – Function to call
• args – Positional arguments to call the function with

Params kwargs Keyword arguments to call the function with
The function will be called until it doesn’t throw one of the retryable exceptions (Connection-
Loss, OperationTimeout, or ForceRetryError), and optionally retrying on session expiration.

reset()
Reset the attempt counter

copy()
Return a clone of this retry manager

exception kazoo.retry.ForceRetryError
Raised when some recipe logic wants to force a retry.

exception kazoo.retry.RetryFailedError
Raised when retrying an operation ultimately failed, after retrying the maximum number of attempts.

exception kazoo.retry.InterruptedError
Raised when the retry is forcibly interrupted by the interrupt function

1.6.19 kazoo.security

Kazoo Security

Public API

class kazoo.security.ACL
An ACL for a Zookeeper Node

An ACL object is created by using an Id object along with a Permissions setting. For conve-
nience, make_digest_acl() should be used to create an ACL object with the desired scheme,
id, and permissions.

class kazoo.security.Id(scheme, id)

54 Chapter 1. Reference Docs

kazoo Documentation, Release 2.8.0

kazoo.security.make_digest_acl(username, password, read=False, write=False, cre-
ate=False, delete=False, admin=False, all=False)

Create a digest ACL for Zookeeper with the given permissions

This method combines make_digest_acl_credential() and make_acl() to create an
ACL object appropriate for use with Kazoo’s ACL methods.

Parameters

• username – Username to use for the ACL.

• password – A plain-text password to hash.

• write (bool) – Write permission.

• create (bool) – Create permission.

• delete (bool) – Delete permission.

• admin (bool) – Admin permission.

• all (bool) – All permissions.

Return type ACL

Private API

kazoo.security.make_acl(scheme, credential, read=False, write=False, create=False,
delete=False, admin=False, all=False)

Given a scheme and credential, return an ACL object appropriate for use with Kazoo.

Parameters

• scheme – The scheme to use. I.e. digest.

• credential – A colon separated username, password. The password should be
hashed with the scheme specified. The make_digest_acl_credential()
method will create and return a credential appropriate for use with the digest scheme.

• write (bool) – Write permission.

• create (bool) – Create permission.

• delete (bool) – Delete permission.

• admin (bool) – Admin permission.

• all (bool) – All permissions.

Return type ACL

kazoo.security.make_digest_acl_credential(username, password)
Create a SHA1 digest credential.

Note: This function uses UTF-8 to encode non-ASCII codepoints, whereas ZooKeeper uses the
“default locale” for decoding. It may be a good idea to start the JVM with -Dfile.encoding=UTF-8
in non-UTF-8 locales. See: https://github.com/python-zk/kazoo/pull/584

1.6.20 kazoo.testing.harness

Kazoo testing harnesses

1.6. API Documentation 55

https://github.com/python-zk/kazoo/pull/584

kazoo Documentation, Release 2.8.0

Public API

class kazoo.testing.harness.KazooTestHarness(*args, **kw)
Harness for testing code that uses Kazoo

This object can be used directly or as a mixin. It supports starting and stopping a complete
ZooKeeper cluster locally and provides an API for simulating errors and expiring sessions.

Example:

class MyTestCase(KazooTestHarness):
def setUp(self):

self.setup_zookeeper()

additional test setup

def tearDown(self):
self.teardown_zookeeper()

def test_something(self):
something_that_needs_a_kazoo_client(self.client)

def test_something_else(self):
something_that_needs_zk_servers(self.servers)

class kazoo.testing.harness.KazooTestCase(*args, **kw)

56 Chapter 1. Reference Docs

CHAPTER 2

Why

Using Zookeeper in a safe manner can be difficult due to the variety of edge-cases in Zookeeper and other bugs that
have been present in the Python C binding. Due to how the C library utilizes a separate C thread for Zookeeper
communication some libraries like gevent (or eventlet) also don’t work properly by default.

By utilizing a pure Python implementation, Kazoo handles all of these cases and provides a new asynchronous API
which is consistent when using threads or gevent (or eventlet) greenlets.

57

http://gevent.org/
http://eventlet.net/
http://gevent.org/
http://eventlet.net/

kazoo Documentation, Release 2.8.0

58 Chapter 2. Why

CHAPTER 3

Source Code

All source code is available on github under kazoo.

59

https://github.com/python-zk/kazoo

kazoo Documentation, Release 2.8.0

60 Chapter 3. Source Code

CHAPTER 4

Bugs/Support

Bugs should be reported on the kazoo github issue tracker.

The developers of kazoo can frequently be found on the Freenode IRC network in the #zookeeper channel.

For general discussions and support questions, please use the python-zk mailing list hosted on Google Groups.

61

https://github.com/python-zk/kazoo/issues
irc://chat.freenode.net/zookeeper
https://groups.google.com/forum/#!forum/python-zk

kazoo Documentation, Release 2.8.0

62 Chapter 4. Bugs/Support

CHAPTER 5

Indices and tables

• genindex

• modindex

• Glossary

5.1 Glossary

Zookeeper Apache Zookeeper is a centralized service for maintaining configuration information, naming, providing
distributed synchronization, and providing group services.

63

http://zookeeper.apache.org/

kazoo Documentation, Release 2.8.0

64 Chapter 5. Indices and tables

CHAPTER 6

License

kazoo is offered under the Apache License 2.0.

65

kazoo Documentation, Release 2.8.0

66 Chapter 6. License

CHAPTER 7

Authors

kazoo started under the Nimbus Project and through collaboration with the open-source community has been merged
with code from Mozilla and the Zope Corporation. It has since gathered an active community of over two dozen
contributors from a variety of companies (twitter, mozilla, yahoo! and others).

67

http://www.nimbusproject.org/
http://www.mozilla.org/
http://zope.com/

kazoo Documentation, Release 2.8.0

68 Chapter 7. Authors

Python Module Index

k
kazoo.client, 13
kazoo.exceptions, 23
kazoo.handlers.gevent, 24
kazoo.handlers.threading, 28
kazoo.handlers.utils, 29
kazoo.interfaces, 30
kazoo.protocol.states, 32
kazoo.recipe.barrier, 34
kazoo.recipe.cache, 35
kazoo.recipe.counter, 38
kazoo.recipe.election, 39
kazoo.recipe.lease, 40
kazoo.recipe.lock, 41
kazoo.recipe.partitioner, 46
kazoo.recipe.party, 48
kazoo.recipe.queue, 49
kazoo.recipe.watchers, 51
kazoo.retry, 53
kazoo.security, 54
kazoo.testing.harness, 55

69

kazoo Documentation, Release 2.8.0

70 Python Module Index

Index

Symbols
__add__() (kazoo.recipe.counter.Counter method), 39
__call__() (kazoo.recipe.watchers.ChildrenWatch

method), 53
__call__() (kazoo.recipe.watchers.DataWatch

method), 52
__call__() (kazoo.retry.KazooRetry method), 54
__init__() (kazoo.client.KazooClient method), 13
__init__() (kazoo.recipe.barrier.Barrier method), 35
__init__() (kazoo.recipe.barrier.DoubleBarrier

method), 35
__init__() (kazoo.recipe.counter.Counter method),

38
__init__() (kazoo.recipe.election.Election method),

39
__init__() (kazoo.recipe.lease.MultiNonBlockingLease

method), 41
__init__() (kazoo.recipe.lease.NonBlockingLease

method), 40
__init__() (kazoo.recipe.lock.Lock method), 42
__init__() (kazoo.recipe.lock.ReadLock method), 43
__init__() (kazoo.recipe.lock.Semaphore method),

45
__init__() (kazoo.recipe.lock.WriteLock method), 44
__init__() (kazoo.recipe.partitioner.SetPartitioner

method), 47
__init__() (kazoo.recipe.party.Party method), 48
__init__() (kazoo.recipe.party.ShallowParty

method), 49
__init__() (kazoo.recipe.queue.LockingQueue

method), 50
__init__() (kazoo.recipe.queue.Queue method), 49
__init__() (kazoo.recipe.watchers.ChildrenWatch

method), 52
__init__() (kazoo.recipe.watchers.DataWatch

method), 52
__init__() (kazoo.recipe.watchers.PatientChildrenWatch

method), 53
__init__() (kazoo.retry.KazooRetry method), 53

__iter__() (kazoo.recipe.party.Party method), 48
__iter__() (kazoo.recipe.party.ShallowParty

method), 49
__len__() (kazoo.recipe.party.Party method), 48
__len__() (kazoo.recipe.party.ShallowParty method),

49
__len__() (kazoo.recipe.queue.LockingQueue

method), 50
__len__() (kazoo.recipe.queue.Queue method), 49
__sub__() (kazoo.recipe.counter.Counter method), 39

A
ACL (class in kazoo.security), 54
acl_version (kazoo.protocol.states.ZnodeStat at-

tribute), 34
acquire() (kazoo.recipe.lock.Lock method), 42
acquire() (kazoo.recipe.lock.ReadLock method), 43
acquire() (kazoo.recipe.lock.Semaphore method), 45
acquire() (kazoo.recipe.lock.WriteLock method), 44
ACQUIRED (kazoo.recipe.partitioner.PartitionState at-

tribute), 48
acquired (kazoo.recipe.partitioner.SetPartitioner at-

tribute), 47
add_auth() (kazoo.client.KazooClient method), 17
add_auth_async() (kazoo.client.KazooClient

method), 17
add_listener() (kazoo.client.KazooClient method),

15
ALLOCATING (kazoo.recipe.partitioner.PartitionState

attribute), 48
allocating (kazoo.recipe.partitioner.SetPartitioner

attribute), 47
APIError, 23
async_result() (ka-

zoo.handlers.gevent.SequentialGeventHandler
method), 24

async_result() (ka-
zoo.handlers.threading.SequentialThreadingHandler
method), 28

71

kazoo Documentation, Release 2.8.0

async_result() (kazoo.interfaces.IHandler
method), 30

AsyncResult (class in kazoo.handlers.gevent), 25
AsyncResult (class in kazoo.handlers.threading), 29
AUTH_FAILED (kazoo.protocol.states.KeeperState at-

tribute), 33
AuthFailedError, 23

B
BadArgumentsError, 23
BadVersionError, 23
Barrier (class in kazoo.recipe.barrier), 34

C
Callback (class in kazoo.protocol.states), 34
cancel() (kazoo.handlers.gevent.AsyncResult

method), 26
cancel() (kazoo.recipe.election.Election method), 39
cancel() (kazoo.recipe.lock.Lock method), 42
cancel() (kazoo.recipe.lock.ReadLock method), 43
cancel() (kazoo.recipe.lock.Semaphore method), 45
cancel() (kazoo.recipe.lock.WriteLock method), 44
cancelled() (kazoo.handlers.gevent.AsyncResult

method), 26
CancelledError, 23
capture_exceptions() (in module ka-

zoo.handlers.utils), 29
CHANGED (kazoo.protocol.states.EventType attribute), 32
check() (kazoo.client.TransactionRequest method), 22
CHILD (kazoo.protocol.states.EventType attribute), 32
children_count (kazoo.protocol.states.ZnodeStat at-

tribute), 34
ChildrenWatch (class in kazoo.recipe.watchers), 52
client_id (kazoo.client.KazooClient attribute), 15
client_state (kazoo.client.KazooClient attribute),

15
close() (kazoo.client.KazooClient method), 16
close() (kazoo.recipe.cache.TreeCache method), 36
command() (kazoo.client.KazooClient method), 16
commit() (kazoo.client.TransactionRequest method),

23
commit_async() (kazoo.client.TransactionRequest

method), 22
ConfigurationError, 23
connected (kazoo.client.KazooClient attribute), 15
CONNECTED (kazoo.protocol.states.KazooState at-

tribute), 33
CONNECTED (kazoo.protocol.states.KeeperState at-

tribute), 33
CONNECTED_RO (kazoo.protocol.states.KeeperState at-

tribute), 33
CONNECTING (kazoo.protocol.states.KeeperState

attribute), 33
ConnectionClosedError, 23

ConnectionDropped, 23
ConnectionLoss, 23
consume() (kazoo.recipe.queue.LockingQueue

method), 50
contenders() (kazoo.recipe.election.Election

method), 39
contenders() (kazoo.recipe.lock.Lock method), 42
contenders() (kazoo.recipe.lock.ReadLock method),

43
contenders() (kazoo.recipe.lock.WriteLock method),

44
copy() (kazoo.retry.KazooRetry method), 54
Counter (class in kazoo.recipe.counter), 38
create() (kazoo.client.KazooClient method), 17
create() (kazoo.client.TransactionRequest method),

22
create() (kazoo.recipe.barrier.Barrier method), 35
create_async() (kazoo.client.KazooClient method),

18
create_connection() (kazoo.interfaces.IHandler

method), 30
create_socket_pair() (in module ka-

zoo.handlers.utils), 29
create_tcp_socket() (in module ka-

zoo.handlers.utils), 29
CREATED (kazoo.protocol.states.EventType attribute), 32
created (kazoo.protocol.states.ZnodeStat attribute), 34
creation_transaction_id (ka-

zoo.protocol.states.ZnodeStat attribute),
34

D
data (kazoo.recipe.cache.NodeData attribute), 37
data_length (kazoo.protocol.states.ZnodeStat at-

tribute), 34
DataInconsistency, 23
DataWatch (class in kazoo.recipe.watchers), 51
delete() (kazoo.client.KazooClient method), 20
delete() (kazoo.client.TransactionRequest method),

22
delete_async() (kazoo.client.KazooClient method),

21
DELETED (kazoo.protocol.states.EventType attribute), 32
dispatch_callback() (ka-

zoo.handlers.gevent.SequentialGeventHandler
method), 24

dispatch_callback() (ka-
zoo.handlers.threading.SequentialThreadingHandler
method), 28

dispatch_callback() (kazoo.interfaces.IHandler
method), 30

done() (kazoo.handlers.gevent.AsyncResult method),
26

DoubleBarrier (class in kazoo.recipe.barrier), 35

72 Index

kazoo Documentation, Release 2.8.0

E
Election (class in kazoo.recipe.election), 39
ensure_path() (kazoo.client.KazooClient method),

18
ensure_path_async() (kazoo.client.KazooClient

method), 18
enter() (kazoo.recipe.barrier.DoubleBarrier method),

35
event_data (kazoo.recipe.cache.TreeEvent attribute),

37
event_object() (ka-

zoo.handlers.gevent.SequentialGeventHandler
method), 24

event_object() (ka-
zoo.handlers.threading.SequentialThreadingHandler
method), 28

event_object() (kazoo.interfaces.IHandler
method), 30

event_type (kazoo.recipe.cache.TreeEvent attribute),
37

EventType (class in kazoo.protocol.states), 32
exc_info (kazoo.handlers.gevent.AsyncResult at-

tribute), 26
exception (kazoo.handlers.gevent.AsyncResult at-

tribute), 26
exception (kazoo.interfaces.IAsyncResult attribute),

31
exists() (kazoo.client.KazooClient method), 18
exists_async() (kazoo.client.KazooClient method),

18
EXPIRED_SESSION (ka-

zoo.protocol.states.KeeperState attribute),
33

F
failed (kazoo.recipe.partitioner.SetPartitioner at-

tribute), 47
FAILURE (kazoo.recipe.partitioner.PartitionState at-

tribute), 48
finish() (kazoo.recipe.partitioner.SetPartitioner

method), 47
ForceRetryError, 54

G
get() (kazoo.client.KazooClient method), 18
get() (kazoo.handlers.gevent.AsyncResult method), 26
get() (kazoo.interfaces.IAsyncResult method), 31
get() (kazoo.recipe.queue.LockingQueue method), 50
get() (kazoo.recipe.queue.Queue method), 49
get_acls() (kazoo.client.KazooClient method), 19
get_acls_async() (kazoo.client.KazooClient

method), 19
get_async() (kazoo.client.KazooClient method), 19

get_children() (kazoo.client.KazooClient method),
19

get_children() (kazoo.recipe.cache.TreeCache
method), 37

get_children_async() (kazoo.client.KazooClient
method), 19

get_data() (kazoo.recipe.cache.TreeCache method),
37

get_nowait() (kazoo.handlers.gevent.AsyncResult
method), 27

get_nowait() (kazoo.interfaces.IAsyncResult
method), 31

H
handler (kazoo.client.KazooClient attribute), 15
holds_lock() (kazoo.recipe.queue.LockingQueue

method), 50

I
IAsyncResult (class in kazoo.interfaces), 31
Id (class in kazoo.security), 54
IHandler (class in kazoo.interfaces), 30
InterruptedError, 54
InvalidACLError, 23
InvalidCallbackError, 24

J
join() (kazoo.recipe.party.Party method), 48
join() (kazoo.recipe.party.ShallowParty method), 49

K
kazoo.client (module), 13
kazoo.exceptions (module), 23
kazoo.handlers.gevent (module), 24
kazoo.handlers.threading (module), 28
kazoo.handlers.utils (module), 29
kazoo.interfaces (module), 30
kazoo.protocol.states (module), 32
kazoo.recipe.barrier (module), 34
kazoo.recipe.cache (module), 35
kazoo.recipe.counter (module), 38
kazoo.recipe.election (module), 39
kazoo.recipe.lease (module), 40
kazoo.recipe.lock (module), 41
kazoo.recipe.partitioner (module), 46
kazoo.recipe.party (module), 48
kazoo.recipe.queue (module), 49
kazoo.recipe.watchers (module), 51
kazoo.retry (module), 53
kazoo.security (module), 54
kazoo.testing.harness (module), 55
KazooClient (class in kazoo.client), 13
KazooException, 23
KazooRetry (class in kazoo.retry), 53

Index 73

kazoo Documentation, Release 2.8.0

KazooState (class in kazoo.protocol.states), 32
KazooTestCase (class in kazoo.testing.harness), 56
KazooTestHarness (class in kazoo.testing.harness),

56
KeeperState (class in kazoo.protocol.states), 33

L
last_modified (kazoo.protocol.states.ZnodeStat at-

tribute), 34
last_modified_transaction_id (ka-

zoo.protocol.states.ZnodeStat attribute),
34

lease_holders() (kazoo.recipe.lock.Semaphore
method), 45

leave() (kazoo.recipe.barrier.DoubleBarrier method),
35

leave() (kazoo.recipe.party.Party method), 48
leave() (kazoo.recipe.party.ShallowParty method), 49
listen() (kazoo.recipe.cache.TreeCache method), 36
listen_fault() (kazoo.recipe.cache.TreeCache

method), 36
Lock (class in kazoo.recipe.lock), 41
lock_object() (ka-

zoo.handlers.gevent.SequentialGeventHandler
method), 25

lock_object() (ka-
zoo.handlers.threading.SequentialThreadingHandler
method), 28

lock_object() (kazoo.interfaces.IHandler method),
30

LockingQueue (class in kazoo.recipe.queue), 50
LockTimeout, 23
LOST (kazoo.protocol.states.KazooState attribute), 33

M
make() (kazoo.recipe.cache.NodeData class method),

37
make() (kazoo.recipe.cache.TreeEvent class method),

37
make_acl() (in module kazoo.security), 55
make_digest_acl() (in module kazoo.security), 54
make_digest_acl_credential() (in module ka-

zoo.security), 55
MarshallingError, 23
MultiNonBlockingLease (class in ka-

zoo.recipe.lease), 41

N
name (kazoo.interfaces.IHandler attribute), 30
NoAuthError, 23
NoChildrenForEphemeralsError, 23
NodeData (class in kazoo.recipe.cache), 37
NodeExistsError, 23
NonBlockingLease (class in kazoo.recipe.lease), 40

NONE (kazoo.protocol.states.EventType attribute), 32
NoNodeError, 23
NotEmptyError, 23
NotReadOnlyCallError, 23

O
OperationTimeoutError, 24
owner_session_id (kazoo.protocol.states.ZnodeStat

attribute), 34

P
PartitionState (class in kazoo.recipe.partitioner),

48
Party (class in kazoo.recipe.party), 48
path (kazoo.protocol.states.WatchedEvent attribute), 33
path (kazoo.recipe.cache.NodeData attribute), 37
PatientChildrenWatch (class in ka-

zoo.recipe.watchers), 53
put() (kazoo.recipe.queue.LockingQueue method), 50
put() (kazoo.recipe.queue.Queue method), 50
put_all() (kazoo.recipe.queue.LockingQueue

method), 51

Q
Queue (class in kazoo.recipe.queue), 49
queue_empty (kazoo.handlers.gevent.SequentialGeventHandler

attribute), 25
queue_empty (kazoo.handlers.threading.SequentialThreadingHandler

attribute), 28
queue_impl (kazoo.handlers.gevent.SequentialGeventHandler

attribute), 25
queue_impl (kazoo.handlers.threading.SequentialThreadingHandler

attribute), 28

R
rawlink() (kazoo.interfaces.IAsyncResult method), 31
ReadLock (class in kazoo.recipe.lock), 42
ready() (kazoo.handlers.gevent.AsyncResult method),

27
ready() (kazoo.interfaces.IAsyncResult method), 31
reconfig() (kazoo.client.KazooClient method), 21
reconfig_async() (kazoo.client.KazooClient

method), 22
RELEASE (kazoo.recipe.partitioner.PartitionState at-

tribute), 48
release (kazoo.recipe.partitioner.SetPartitioner

attribute), 47
release() (kazoo.recipe.lock.Lock method), 42
release() (kazoo.recipe.lock.ReadLock method), 43
release() (kazoo.recipe.lock.Semaphore method), 45
release() (kazoo.recipe.lock.WriteLock method), 44
release() (kazoo.recipe.queue.LockingQueue

method), 51

74 Index

kazoo Documentation, Release 2.8.0

release_set() (ka-
zoo.recipe.partitioner.SetPartitioner method),
47

remove() (kazoo.recipe.barrier.Barrier method), 35
remove_listener() (kazoo.client.KazooClient

method), 16
reset() (kazoo.retry.KazooRetry method), 54
restart() (kazoo.client.KazooClient method), 16
result() (kazoo.handlers.gevent.AsyncResult

method), 27
retry() (kazoo.client.KazooClient method), 15
RetryFailedError, 54
rlock_object() (ka-

zoo.handlers.gevent.SequentialGeventHandler
method), 25

rlock_object() (ka-
zoo.handlers.threading.SequentialThreadingHandler
method), 29

rlock_object() (kazoo.interfaces.IHandler
method), 30

RolledBackError, 24
run() (kazoo.recipe.election.Election method), 39
RuntimeInconsistency, 24

S
select() (kazoo.interfaces.IHandler method), 30
Semaphore (class in kazoo.recipe.lock), 45
SequentialGeventHandler (class in ka-

zoo.handlers.gevent), 24
SequentialGeventHandler.timeout_exception,

25
SequentialThreadingHandler (class in ka-

zoo.handlers.threading), 28
server_version() (kazoo.client.KazooClient

method), 16
SessionExpiredError, 24
SessionMovedError, 24
set() (kazoo.client.KazooClient method), 20
set() (kazoo.handlers.gevent.AsyncResult method), 27
set() (kazoo.interfaces.IAsyncResult method), 32
set_acls() (kazoo.client.KazooClient method), 19
set_acls_async() (kazoo.client.KazooClient

method), 20
set_async() (kazoo.client.KazooClient method), 20
set_data() (kazoo.client.TransactionRequest

method), 22
set_exception() (ka-

zoo.handlers.gevent.AsyncResult method),
27

set_exception() (kazoo.interfaces.IAsyncResult
method), 32

set_hosts() (kazoo.client.KazooClient method), 15
set_result() (kazoo.handlers.gevent.AsyncResult

method), 27

SetPartitioner (class in kazoo.recipe.partitioner),
46

ShallowParty (class in kazoo.recipe.party), 48
sleep_func (kazoo.interfaces.IHandler attribute), 30
sleep_func() (kazoo.handlers.gevent.SequentialGeventHandler

static method), 25
sleep_func() (kazoo.handlers.threading.SequentialThreadingHandler

static method), 29
socket() (kazoo.interfaces.IHandler method), 30
spawn() (kazoo.handlers.gevent.SequentialGeventHandler

method), 25
spawn() (kazoo.interfaces.IHandler method), 31
start() (kazoo.client.KazooClient method), 16
start() (kazoo.handlers.gevent.SequentialGeventHandler

method), 25
start() (kazoo.handlers.threading.SequentialThreadingHandler

method), 29
start() (kazoo.interfaces.IHandler method), 31
start() (kazoo.recipe.cache.TreeCache method), 36
start() (kazoo.recipe.watchers.PatientChildrenWatch

method), 53
start_async() (kazoo.client.KazooClient method),

16
stat (kazoo.recipe.cache.NodeData attribute), 37
state (kazoo.client.KazooClient attribute), 15
state (kazoo.protocol.states.WatchedEvent attribute),

33
stop() (kazoo.client.KazooClient method), 16
stop() (kazoo.handlers.gevent.SequentialGeventHandler

method), 25
stop() (kazoo.handlers.threading.SequentialThreadingHandler

method), 29
stop() (kazoo.interfaces.IHandler method), 31
successful() (kazoo.handlers.gevent.AsyncResult

method), 27
successful() (kazoo.interfaces.IAsyncResult

method), 32
SUSPENDED (kazoo.protocol.states.KazooState at-

tribute), 33
sync() (kazoo.client.KazooClient method), 17
sync_async() (kazoo.client.KazooClient method), 17
SystemZookeeperError, 24

T
timeout_exception (ka-

zoo.handlers.threading.SequentialThreadingHandler
attribute), 29

timeout_exception (kazoo.interfaces.IHandler at-
tribute), 30

transaction() (kazoo.client.KazooClient method),
20

TransactionRequest (class in kazoo.client), 22
TreeCache (class in kazoo.recipe.cache), 36
TreeEvent (class in kazoo.recipe.cache), 37

Index 75

kazoo Documentation, Release 2.8.0

type (kazoo.protocol.states.WatchedEvent attribute), 33

U
unchroot() (kazoo.client.KazooClient method), 17
UnimplementedError, 24
unlink() (kazoo.interfaces.IAsyncResult method), 32

V
value (kazoo.handlers.gevent.AsyncResult attribute), 27
value (kazoo.interfaces.IAsyncResult attribute), 31
version (kazoo.protocol.states.ZnodeStat attribute), 34

W
wait() (kazoo.handlers.gevent.AsyncResult method),

27
wait() (kazoo.interfaces.IAsyncResult method), 32
wait() (kazoo.recipe.barrier.Barrier method), 35
wait_for_acquire() (ka-

zoo.recipe.partitioner.SetPartitioner method),
47

WatchedEvent (class in kazoo.protocol.states), 33
wrap() (in module kazoo.handlers.utils), 29
WriteLock (class in kazoo.recipe.lock), 43
WriterNotClosedException, 24

Z
ZnodeStat (class in kazoo.protocol.states), 33
Zookeeper, 63
ZookeeperError, 23
ZookeeperStoppedError, 24

76 Index

	Reference Docs
	Why
	Source Code
	Bugs/Support
	Indices and tables
	License
	Authors
	Python Module Index
	Index

