

kazoo

Kazoo is a Python library designed to make working with Zookeeper a
more hassle-free experience that is less prone to errors.

Kazoo features:

	A wide range of recipe implementations, like Lock, Election or Queue

	Data and Children Watchers

	Simplified Zookeeper connection state tracking

	Unified asynchronous API for use with greenlets or threads

	Support for gevent [http://gevent.org/] >= 1.2

	Support for eventlet [http://eventlet.net/]

	Support for Zookeeper 3.3, 3.4, and 3.5 servers

	Integrated testing helpers for Zookeeper clusters

	Pure-Python based implementation of the wire protocol, avoiding all the
memory leaks, lacking features, and debugging madness of the C library

Kazoo is heavily inspired by Netflix Curator [https://github.com/Netflix/curator] simplifications and helpers.

Note

You should be familiar with Zookeeper and have read the Zookeeper
Programmers Guide [https://zookeeper.apache.org/doc/current/zookeeperProgrammers.html] before using kazoo.

 Installing

Installing

kazoo can be installed via pip:

$ pip install kazoo

Kazoo implements the Zookeeper protocol in pure Python, so you don’t need
any Python Zookeeper C bindings installed.

 Basic Usage

Basic Usage

Connection Handling

To begin using Kazoo, a KazooClient object must be
created and a connection established:

from kazoo.client import KazooClient

zk = KazooClient(hosts='127.0.0.1:2181')
zk.start()

By default, the client will connect to a local Zookeeper server on the default
port (2181). You should make sure Zookeeper is actually running there first,
or the start command will be waiting until its default timeout.

Once connected, the client will attempt to stay connected regardless of
intermittent connection loss or Zookeeper session expiration. The client can be
instructed to drop a connection by calling stop:

zk.stop()

Logging Setup

If logging is not setup for your application, you can get following message:

No handlers could be found for logger "kazoo.client"

To avoid this issue you can at the very minimum do the following:

import logging
logging.basicConfig()

Read Python’s logging tutorial [https://docs.python.org/howto/logging.html]
for more details.

Listening for Connection Events

It can be useful to know when the connection has been dropped, restored, or
when the Zookeeper session has expired. To simplify this process Kazoo uses a
state system and lets you register listener functions to be called when the
state changes.

from kazoo.client import KazooState

def my_listener(state):
 if state == KazooState.LOST:
 # Register somewhere that the session was lost
 elif state == KazooState.SUSPENDED:
 # Handle being disconnected from Zookeeper
 else:
 # Handle being connected/reconnected to Zookeeper

zk.add_listener(my_listener)

When using the kazoo.recipe.lock.Lock or creating ephemeral nodes, its
highly recommended to add a state listener so that your program can properly
deal with connection interruptions or a Zookeeper session loss.

Understanding Kazoo States

The KazooState object represents several states
the client transitions through. The current state of the client can always be
determined by viewing the state property. The
possible states are:

	LOST

	CONNECTED

	SUSPENDED

When a KazooClient instance is first created, it is in
the LOST state. After a connection is established it transitions to the
CONNECTED state. If any connection issues come up or if it needs to connect
to a different Zookeeper cluster node, it will transition to SUSPENDED to let
you know that commands cannot currently be run. The connection will also be
lost if the Zookeeper node is no longer part of the quorum, resulting in a
SUSPENDED state.

Upon re-establishing a connection the client could transition to LOST if the
session has expired, or CONNECTED if the session is still valid.

Note

These states should be monitored using a listener as described previously
so that the client behaves properly depending on the state of the
connection.

 Asynchronous Usage

Asynchronous Usage

The asynchronous Kazoo API relies on the
IAsyncResult object which is returned by all the
asynchronous methods. Callbacks can be added with the
rawlink() method which works in a
consistent manner whether threads or an asynchronous framework like gevent is
used.

Kazoo utilizes a pluggable IHandler interface which
abstracts the callback system to ensure it works consistently.

Connection Handling

Creating a connection:

from kazoo.client import KazooClient
from kazoo.handlers.gevent import SequentialGeventHandler

zk = KazooClient(handler=SequentialGeventHandler())

returns immediately
event = zk.start_async()

Wait for 30 seconds and see if we're connected
event.wait(timeout=30)

if not zk.connected:
 # Not connected, stop trying to connect
 zk.stop()
 raise Exception("Unable to connect.")

In this example, the wait method is used on the event object returned by the
start_async() method. A timeout is always
used because its possible that we might never connect and that should be
handled gracefully.

The SequentialGeventHandler is used when you
want to use gevent (and
SequentialEventletHandler when eventlet is
used). Kazoo doesn’t rely on gevents/eventlet monkey patching and requires
that you pass in the appropriate handler, the default handler is
SequentialThreadingHandler.

Asynchronous Callbacks

All kazoo _async methods except for
start_async() return an
IAsyncResult instance. These instances allow
you to see when a result is ready, or chain one or more callback
functions to the result that will be called when it’s ready.

The callback function will be passed the
IAsyncResult instance and should call the
get() method on it to retrieve
the value. This call could result in an exception being raised
if the asynchronous function encountered an error. It should be caught
and handled appropriately.

Example:

import sys

from kazoo.exceptions import ConnectionLossException
from kazoo.exceptions import NoAuthException

def my_callback(async_obj):
 try:
 children = async_obj.get()
 do_something(children)
 except (ConnectionLossException, NoAuthException):
 sys.exit(1)

Both these statements return immediately, the second sets a callback
that will be run when get_children_async has its return value
async_obj = zk.get_children_async("/some/node")
async_obj.rawlink(my_callback)

Zookeeper CRUD

The following CRUD methods all work the same as their synchronous counterparts
except that they return an IAsyncResult object.

Creating Method:

	create_async()

Reading Methods:

	exists_async()

	get_async()

	get_children_async()

Updating Methods:

	set_async()

Deleting Methods:

	delete_async()

The ensure_path() has no asynchronous
counterpart at the moment nor can the
delete_async() method do recursive deletes.

 Implementation Details

Implementation Details

Up to version 0.3 kazoo used the Python bindings to the Zookeeper C library.
Unfortunately those bindings are fairly buggy and required a fair share of
weird workarounds to interface with the native OS thread used in those
bindings.

Starting with version 0.4 kazoo implements the entire Zookeeper wire protocol
itself in pure Python. Doing so removed the need for the workarounds and made
it much easier to implement the features missing in the C bindings.

Handlers

Both the Kazoo handlers run 3 separate queues to help alleviate deadlock issues
and ensure consistent execution order regardless of environment. The
SequentialGeventHandler runs a separate
greenlet for each queue that processes the callbacks queued in order. The
SequentialThreadingHandler runs a separate
thread for each queue that processes the callbacks queued in order (thus the
naming scheme which notes they are sequential in anticipation that there could
be handlers shipped in the future which don’t make this guarantee).

Callbacks are queued by type, the 3 types being:

	Session events (State changes, registered listener functions)

	Watch events (Watch callbacks, DataWatch, and ChildrenWatch functions)

	Completion callbacks (Functions chained to
IAsyncResult objects)

This ensures that calls can be made to Zookeeper from any callback except for
a state listener without worrying that critical session events will be
blocked.

Warning

Its important to remember that if you write code that blocks in one of
these functions then no queued functions of that type will be executed
until the code stops blocking. If your code might block, it should run
itself in a separate greenlet/thread so that the other callbacks can
run.

 Testing

Testing

Kazoo has several test harnesses used internally for its own tests that are
exposed as public API’s for use in your own tests for common Zookeeper cluster
management and session testing. They can be mixed in with your own unittest
or pytest tests along with a mock object that allows you to force specific
KazooClient commands to fail in various ways.

The test harness needs to be able to find the Zookeeper Java libraries. You
need to specify an environment variable called ZOOKEEPER_PATH and point it
to their location, for example /usr/share/java. The directory should contain
a zookeeper-*.jar and a lib directory containing at least a log4j-*.jar.

If your Java setup is complex, you may also override our classpath mechanism
completely by specifying an environment variable called ZOOKEEPER_CLASSPATH.
If provided, it will be used unmodified as the Java classpath for Zookeeper.

You can specify an optional ZOOKEEPER_PORT_OFFSET environment variable to
influence the ports the cluster is using. By default the offset is 20000 and
a cluster with three members will use ports 20000, 20010 and 20020.

Kazoo Test Harness

The KazooTestHarness can be used directly or
mixed in with your test code.

Example:

from kazoo.testing import KazooTestHarness

class MyTest(KazooTestHarness):
 def setUp(self):
 self.setup_zookeeper()

 def tearDown(self):
 self.teardown_zookeeper()

 def testmycode(self):
 self.client.ensure_path('/test/path')
 result = self.client.get('/test/path')
 ...

Kazoo Test Case

The KazooTestCase is complete test case that
is equivalent to the mixin setup of
KazooTestHarness. An equivalent test to the
one above:

from kazoo.testing import KazooTestCase

class MyTest(KazooTestCase):
 def testmycode(self):
 self.client.ensure_path('/test/path')
 result = self.client.get('/test/path')
 ...

Zake

For those that do not need (or desire) to setup a Zookeeper cluster to test
integration with kazoo there is also a library called
zake [https://pypi.python.org/pypi/zake/]. Contributions to
Zake’s github repository [https://github.com/yahoo/Zake] are welcome.

Zake can be used to provide a mock client to layers of your application that
interact with kazoo (using the same client interface) during testing to allow
for introspection of what was stored, which watchers are active (and more)
after your test of your application code has finished.

 API Documentation

API Documentation

Comprehensive reference material for every public API exposed by
kazoo is available within this chapter. The API documentation is
organized alphabetically by module name.

	kazoo.client

	kazoo.exceptions

	kazoo.handlers.gevent

	kazoo.handlers.threading

	kazoo.handlers.utils

	kazoo.interfaces

	kazoo.protocol.states

	kazoo.recipe.barrier

	kazoo.recipe.cache

	kazoo.recipe.counter

	kazoo.recipe.election

	kazoo.recipe.lease

	kazoo.recipe.lock

	kazoo.recipe.partitioner

	kazoo.recipe.party

	kazoo.recipe.queue

	kazoo.recipe.watchers

	kazoo.retry

	kazoo.security

	kazoo.testing.harness

 kazoo.client

kazoo.client

Kazoo Zookeeper Client

Public API

	
class kazoo.client.KazooClient

	An Apache Zookeeper Python client supporting alternate callback
handlers and high-level functionality.

Watch functions registered with this class will not get session
events, unlike the default Zookeeper watches. They will also be
called with a single argument, a
WatchedEvent instance.

	
__init__(hosts='127.0.0.1:2181', timeout=10.0, client_id=None, handler=None, default_acl=None, auth_data=None, sasl_options=None, read_only=None, randomize_hosts=True, connection_retry=None, command_retry=None, logger=None, keyfile=None, keyfile_password=None, certfile=None, ca=None, use_ssl=False, verify_certs=True, **kwargs)

	Create a KazooClient instance. All time arguments
are in seconds.

	Parameters:

	
	hosts – Comma-separated list of hosts to connect to
(e.g. 127.0.0.1:2181,127.0.0.1:2182,[::1]:2183).

	timeout – The longest to wait for a Zookeeper connection.

	client_id – A Zookeeper client id, used when
re-establishing a prior session connection.

	handler – An instance of a class implementing the
IHandler interface
for callback handling.

	default_acl – A default ACL used on node creation.

	auth_data – A list of authentication credentials to use for the
connection. Should be a list of (scheme, credential)
tuples as add_auth() takes.

	sasl_options – SASL options for the connection, if SASL support is to be used.
Should be a dict of SASL options passed to the underlying
pure-sasl [https://pypi.org/project/pure-sasl] library.

For example using the DIGEST-MD5 mechnism:

sasl_options = {
 'mechanism': 'DIGEST-MD5',
 'username': 'myusername',
 'password': 'mypassword'
}

For GSSAPI, using the running process’ ticket cache:

sasl_options = {
 'mechanism': 'GSSAPI',
 'service': 'myzk', # optional
 'principal': 'client@EXAMPLE.COM' # optional
}

	read_only – Allow connections to read only servers.

	randomize_hosts – By default randomize host selection.

	connection_retry – A kazoo.retry.KazooRetry object to use for
retrying the connection to Zookeeper. Also can be a dict of
options which will be used for creating one.

	command_retry – A kazoo.retry.KazooRetry object to use for
the KazooClient.retry() method. Also can be a dict of
options which will be used for creating one.

	logger – A custom logger to use instead of the module
global log instance.

	keyfile – SSL keyfile to use for authentication

	keyfile_password – SSL keyfile password

	certfile – SSL certfile to use for authentication

	ca – SSL CA file to use for authentication

	use_ssl – argument to control whether SSL is used or not

	verify_certs – when using SSL, argument to bypass
certs verification

Basic Example:

zk = KazooClient()
zk.start()
children = zk.get_children('/')
zk.stop()

As a convenience all recipe classes are available as attributes
and get automatically bound to the client. For example:

zk = KazooClient()
zk.start()
lock = zk.Lock('/lock_path')

New in version 0.6: The read_only option. Requires Zookeeper 3.4+

New in version 0.6: The retry_max_delay option.

New in version 0.6: The randomize_hosts option.

Changed in version 0.8: Removed the unused watcher argument (was second argument).

New in version 1.2: The connection_retry, command_retry and logger options.

New in version 2.7: The sasl_options option.

	
handler

	The IHandler strategy used by this
client. Gives access to appropriate synchronization objects.

	
retry(func, *args, **kwargs)

	Runs the given function with the provided arguments, retrying if it
fails because the ZooKeeper connection is lost,
see Retrying Commands.

	
state

	A KazooState attribute indicating
the current higher-level connection state.

Note

Up to version 2.6.1, requests could only be submitted
in the CONNECTED state. Requests submitted while
SUSPENDED would immediately raise a
SessionExpiredError. This
was problematic, as sessions are usually recovered on
reconnect.

Kazoo now simply queues requests submitted in the
SUSPENDED state, expecting a recovery. This matches
the behavior of the Java and C clients.

Requests submitted in a LOST state still fail
immediately with the corresponding exception.

See:

	https://github.com/python-zk/kazoo/issues/374 and

	https://github.com/python-zk/kazoo/pull/570

 kazoo.exceptions

kazoo.exceptions

Kazoo Exceptions

Public API

	
exception kazoo.exceptions.KazooException

	Base Kazoo exception that all other kazoo library exceptions
inherit from

	
exception kazoo.exceptions.ZookeeperError

	Base Zookeeper exception for errors originating from the
Zookeeper server

	
exception kazoo.exceptions.AuthFailedError

	

	
exception kazoo.exceptions.BadVersionError

	

	
exception kazoo.exceptions.ConfigurationError

	Raised if the configuration arguments to an object are
invalid

	
exception kazoo.exceptions.InvalidACLError

	

	
exception kazoo.exceptions.LockTimeout

	Raised if failed to acquire a lock.

New in version 1.1.

	
exception kazoo.exceptions.NoChildrenForEphemeralsError

	

	
exception kazoo.exceptions.NodeExistsError

	

	
exception kazoo.exceptions.NoNodeError

	

	
exception kazoo.exceptions.NotEmptyError

	

Private API

	
exception kazoo.exceptions.APIError

	

	
exception kazoo.exceptions.BadArgumentsError

	

	
exception kazoo.exceptions.CancelledError

	Raised when a process is cancelled by another thread

	
exception kazoo.exceptions.ConnectionDropped

	Internal error for jumping out of loops

	
exception kazoo.exceptions.ConnectionClosedError

	Connection is closed

	
exception kazoo.exceptions.ConnectionLoss

	

	
exception kazoo.exceptions.DataInconsistency

	

	
exception kazoo.exceptions.MarshallingError

	

	
exception kazoo.exceptions.NoAuthError

	

	
exception kazoo.exceptions.NotReadOnlyCallError

	An API call that is not read-only was used while connected to
a read-only server

	
exception kazoo.exceptions.InvalidCallbackError

	

	
exception kazoo.exceptions.OperationTimeoutError

	

	
exception kazoo.exceptions.RolledBackError

	

	
exception kazoo.exceptions.RuntimeInconsistency

	

	
exception kazoo.exceptions.SessionExpiredError

	

	
exception kazoo.exceptions.SessionMovedError

	

	
exception kazoo.exceptions.SystemZookeeperError

	

	
exception kazoo.exceptions.UnimplementedError

	

	
exception kazoo.exceptions.WriterNotClosedException

	Raised if the writer is unable to stop closing when requested.

New in version 1.2.

	
exception kazoo.exceptions.ZookeeperStoppedError

	Raised when the kazoo client stopped (and thus not connected)

 kazoo.handlers.gevent

kazoo.handlers.gevent

A gevent based handler.

Public API

	
class kazoo.handlers.gevent.SequentialGeventHandler

	Gevent handler for sequentially executing callbacks.

This handler executes callbacks in a sequential manner. A queue is
created for each of the callback events, so that each type of event
has its callback type run sequentially.

Each queue type has a greenlet worker that pulls the callback event
off the queue and runs it in the order the client sees it.

This split helps ensure that watch callbacks won’t block session
re-establishment should the connection be lost during a Zookeeper
client call.

Watch callbacks should avoid blocking behavior as the next callback
of that type won’t be run until it completes. If you need to block,
spawn a new greenlet and return immediately so callbacks can
proceed.

	
async_result()

	Create a AsyncResult instance

The AsyncResult instance will have its completion
callbacks executed in the thread the
SequentialGeventHandler is created in (which should be
the gevent/main thread).

	
dispatch_callback(callback)

	Dispatch to the callback object

The callback is put on separate queues to run depending on the
type as documented for the SequentialGeventHandler.

	
event_object()

	Create an appropriate Event object

	
lock_object()

	Create an appropriate Lock object

	
queue_empty

	alias of Queue.Empty

	
queue_impl

	alias of gevent._gevent_cqueue.Queue

	
rlock_object()

	Create an appropriate RLock object

	
static sleep_func(seconds=0, ref=True)

	Put the current greenlet to sleep for at least seconds.

seconds may be specified as an integer, or a float if fractional
seconds are desired.

Tip

In the current implementation, a value of 0 (the default)
means to yield execution to any other runnable greenlets, but
this greenlet may be scheduled again before the event loop
cycles (in an extreme case, a greenlet that repeatedly sleeps
with 0 can prevent greenlets that are ready to do I/O from
being scheduled for some (small) period of time); a value greater than
0, on the other hand, will delay running this greenlet until
the next iteration of the loop.

 kazoo.handlers.threading

kazoo.handlers.threading

A threading based handler.

The SequentialThreadingHandler is intended for regular Python
environments that use threads.

Warning

Do not use SequentialThreadingHandler with applications
using asynchronous event loops (like gevent). Use the
SequentialGeventHandler instead.

 kazoo.handlers.utils

kazoo.handlers.utils

Kazoo handler helpers

Public API

	
kazoo.handlers.utils.capture_exceptions(async_result)

	Return a new decorated function that propagates the exceptions of the
wrapped function to an async_result.

	Parameters:

	async_result – An async result implementing IAsyncResult

	
kazoo.handlers.utils.wrap(async_result)

	Return a new decorated function that propagates the return value or
exception of wrapped function to an async_result. NOTE: Only propagates a
non-None return value.

	Parameters:

	async_result – An async result implementing IAsyncResult

Private API

	
kazoo.handlers.utils.create_socket_pair(module, port=0)

	Create socket pair.

If socket.socketpair isn’t available, we emulate it.

	
kazoo.handlers.utils.create_tcp_socket(module)

	Create a TCP socket with the CLOEXEC flag set.

 kazoo.interfaces

kazoo.interfaces

Kazoo Interfaces

Changed in version 1.4: The classes in this module used to be interface declarations based on
zope.interface.Interface. They were converted to normal classes and
now serve as documentation only.

Public API

IHandler implementations should be created by the developer to be
passed into KazooClient during instantiation for the
preferred callback handling.

If the developer needs to use objects implementing the IAsyncResult
interface, the IHandler.async_result() method must be used instead of
instantiating one directly.

	
class kazoo.interfaces.IHandler

	A Callback Handler for Zookeeper completion and watch callbacks.

This object must implement several methods responsible for
determining how completion / watch callbacks are handled as well as
the method for calling IAsyncResult callback functions.

These functions are used to abstract differences between a Python
threading environment and asynchronous single-threaded environments
like gevent. The minimum functionality needed for Kazoo to handle
these differences is encompassed in this interface.

The Handler should document how callbacks are called for:

	Zookeeper completion events

	Zookeeper watch events

	
name

	Human readable name of the Handler interface.

	
timeout_exception

	Exception class that should be thrown and captured if a
result is not available within the given time.

	
sleep_func

	Appropriate sleep function that can be called with a single
argument and sleep.

	
async_result()

	Return an instance that conforms to the
IAsyncResult interface appropriate for this
handler

	
create_connection()

	A socket method that implements Python’s
socket.create_connection API

	
dispatch_callback(callback)

	Dispatch to the callback object

	Parameters:

	callback – A Callback
object to be called.

	
event_object()

	Return an appropriate object that implements Python’s
threading.Event API

	
lock_object()

	Return an appropriate object that implements Python’s
threading.Lock API

	
rlock_object()

	Return an appropriate object that implements Python’s
threading.RLock API

	
select()

	A select method that implements Python’s select.select
API

	
socket()

	A socket method that implements Python’s socket.socket
API

	
spawn(func, *args, **kwargs)

	Spawn a function to run asynchronously

	Parameters:

	
	args – args to call the function with.

	kwargs – keyword args to call the function with.

This method should return immediately and execute the function
with the provided args and kwargs in an asynchronous manner.

	
start()

	Start the handler, used for setting up the handler.

	
stop()

	Stop the handler. Should block until the handler is safely
stopped.

Private API

The IAsyncResult documents the proper implementation for providing
a value that results from a Zookeeper completion callback. Since the
KazooClient returns an IAsyncResult object
instead of taking a completion callback for async functions, developers
wishing to have their own callback called should use the
IAsyncResult.rawlink() method.

	
class kazoo.interfaces.IAsyncResult

	An Async Result object that can be queried for a value that has
been set asynchronously.

This object is modeled on the gevent AsyncResult object.

The implementation must account for the fact that the set()
and set_exception() methods will be called from within the
Zookeeper thread which may require extra care under asynchronous
environments.

	
value

	Holds the value passed to set() if set() was
called. Otherwise None.

	
exception

	Holds the exception instance passed to set_exception()
if set_exception() was called. Otherwise None.

	
get(block=True, timeout=None)

	Return the stored value or raise the exception

	Parameters:

	
	block (bool) – Whether this method should block or return
immediately.

	timeout (float) – How long to wait for a value when block is
True.

If this instance already holds a value / an exception, return /
raise it immediately. Otherwise, block until set() or
set_exception() has been called or until the optional
timeout occurs.

	
get_nowait()

	Return the value or raise the exception without blocking.

If nothing is available, raise the Timeout exception class on
the associated IHandler interface.

	
rawlink(callback)

	Register a callback to call when a value or an exception is
set

	Parameters:

	callback (func) – A callback function to call after set() or
set_exception() has been called. This function will
be passed a single argument, this instance.

	
ready()

	Return True if and only if it holds a value or an
exception

	
set(value=None)

	Store the value. Wake up the waiters.

	Parameters:

	value – Value to store as the result.

Any waiters blocking on get() or wait() are woken
up. Sequential calls to wait() and get() will not
block at all.

	
set_exception(exception)

	Store the exception. Wake up the waiters.

	Parameters:

	exception – Exception to raise when fetching the value.

Any waiters blocking on get() or wait() are woken
up. Sequential calls to wait() and get() will not
block at all.

	
successful()

	Return True if and only if it is ready and holds a
value

	
unlink(callback)

	Remove the callback set by rawlink()

	Parameters:

	callback (func) – A callback function to remove.

	
wait(timeout=None)

	Block until the instance is ready.

	Parameters:

	timeout (float) – How long to wait for a value when block is
True.

If this instance already holds a value / an exception, return /
raise it immediately. Otherwise, block until set() or
set_exception() has been called or until the optional
timeout occurs.

 kazoo.protocol.states

kazoo.protocol.states

Kazoo State and Event objects

Public API

	
class kazoo.protocol.states.EventType

	Zookeeper Event

Represents a Zookeeper event. Events trigger watch functions which
will receive a EventType attribute as their event
argument.

	
CREATED

	A node has been created.

	
DELETED

	A node has been deleted.

	
CHANGED

	The data for a node has changed.

	
CHILD

	The children under a node have changed (a child was added or
removed). This event does not indicate the data for a child
node has changed, which must have its own watch established.

	
NONE

	The connection state has been altered.

	
class kazoo.protocol.states.KazooState

	High level connection state values

States inspired by Netflix Curator.

	
SUSPENDED

	The connection has been lost but may be recovered. We should
operate in a “safe mode” until then. When the connection is
resumed, it may be discovered that the session expired. A
client should not assume that locks are valid during this
time.

	
CONNECTED

	The connection is alive and well.

	
LOST

	The connection has been confirmed dead. Any ephemeral nodes
will need to be recreated upon re-establishing a connection.
If locks were acquired or recipes using ephemeral nodes are in
use, they can be considered lost as well.

	
class kazoo.protocol.states.KeeperState

	Zookeeper State

Represents the Zookeeper state. Watch functions will receive a
KeeperState attribute as their state argument.

	
AUTH_FAILED

	Authentication has failed, this is an unrecoverable error.

	
CONNECTED

	Zookeeper is connected.

	
CONNECTED_RO

	Zookeeper is connected in read-only state.

	
CONNECTING

	Zookeeper is currently attempting to establish a connection.

	
EXPIRED_SESSION

	The prior session was invalid, all prior ephemeral nodes are
gone.

	
class kazoo.protocol.states.WatchedEvent

	A change on ZooKeeper that a Watcher is able to respond to.

The WatchedEvent includes exactly what happened, the
current state of ZooKeeper, and the path of the node that was
involved in the event. An instance of WatchedEvent will be
passed to registered watch functions.

	
type

	A EventType attribute indicating the event type.

	
state

	A KeeperState attribute indicating the Zookeeper
state.

	
path

	The path of the node for the watch event.

	
class kazoo.protocol.states.ZnodeStat

	A ZnodeStat structure with convenience properties

When getting the value of a znode from Zookeeper, the properties for
the znode known as a “Stat structure” will be retrieved. The
ZnodeStat object provides access to the standard Stat
properties and additional properties that are more readable and use
Python time semantics (seconds since epoch instead of ms).

Note

The original Zookeeper Stat name is in parens next to the name
when it differs from the convenience attribute. These are not
functions, just attributes.

 kazoo.recipe.barrier

kazoo.recipe.barrier

Zookeeper Barriers

	Maintainer:

	None

	Status:

	Unknown

Public API

	
class kazoo.recipe.barrier.Barrier(client, path)

	Kazoo Barrier

Implements a barrier to block processing of a set of nodes until
a condition is met at which point the nodes will be allowed to
proceed. The barrier is in place if its node exists.

Warning

The wait() function does not handle connection loss and
may raise ConnectionLossException if
the connection is lost while waiting.

 kazoo.recipe.cache

kazoo.recipe.cache

TreeCache

	Maintainer:

	Jiangge Zhang <tonyseek@gmail.com>

	Maintainer:

	Haochuan Guo <guohaochuan@gmail.com>

	Maintainer:

	Tianwen Zhang <mail2tevin@gmail.com>

	Status:

	Alpha

A port of the Apache Curator’s TreeCache recipe. It builds an in-memory cache
of a subtree in ZooKeeper and keeps it up-to-date.

See also: http://curator.apache.org/curator-recipes/tree-cache.html

Public API

	
cla