

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	kazoo 1.3.1 documentation

kazoo

Kazoo is a Python library designed to make working with Zookeeper a
more hassle-free experience that is less prone to errors.

Kazoo features:

	A wide range of recipe implementations, like Lock, Election or Queue

	Data and Children Watchers

	Simplified Zookeeper connection state tracking

	Unified asynchronous API for use with greenlets or threads

	Support for gevent 0.13 and gevent 1.0

	Support for Zookeeper 3.3 and 3.4 servers

	Integrated testing helpers for Zookeeper clusters

	Pure-Python based implementation of the wire protocol, avoiding all the
memory leaks, lacking features, and debugging madness of the C library

Kazoo is heavily inspired by Netflix Curator [https://github.com/Netflix/curator] simplifications and helpers.

Note

You should be familiar with Zookeeper and have read the Zookeeper
Programmers Guide [http://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html] before using kazoo.

Reference Docs

	Installing

	Basic Usage

	Asynchronous Usage

	Implementation Details

	Testing

	API Documentation

	Changelog

Why

Using Zookeeper in a safe manner can be difficult due to the variety of
edge-cases in Zookeeper and other bugs that have been present in the
Python C binding. Due to how the C library utilizes a separate C thread for
Zookeeper communication some libraries like gevent [http://gevent.org/] also don’t work
properly by default.

By utilizing a pure Python implementation, Kazoo handles all of these
cases and provides a new asynchronous API which is consistent when
using threads or gevent [http://gevent.org/] greenlets.

Source Code

All source code is available on github under kazoo [https://github.com/python-zk/kazoo].

Bugs/Support

Bugs and support issues should be reported on the kazoo github issue tracker [https://github.com/python-zk/kazoo/issues].

The developers of kazoo can frequently be found on the Freenode IRC
network in the #zookeeper channel.

For general discussions, please use the
python-zk [https://groups.google.com/forum/#!forum/python-zk] mailing list
hosted on Google Groups.

Indices and tables

	Index

	Module Index

	Glossary

License

kazoo is offered under the Apache License 2.0.

Authors

kazoo started under the Nimbus Project [http://www.nimbusproject.org/] and through collaboration with
the open-source community has been merged with code from Mozilla [http://www.mozilla.org/] and the
Zope Corporation [http://zope.com/]. It has since gathered an active community of over two
dozen contributors.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

Installing

kazoo can be installed via pip or easy_install:

$ pip install kazoo

Kazoo implements the Zookeeper protocol in pure Python, so you don’t need
any Python Zookeeper C bindings installed.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

Basic Usage

Connection Handling

To begin using Kazoo, a KazooClient object must be
created and a connection established:

from kazoo.client import KazooClient

zk = KazooClient(hosts='127.0.0.1:2181')
zk.start()

By default, the client will connect to a local Zookeeper server on the default
port (2181). You should make sure Zookeeper is actually running there first,
or the start command will be waiting until its default timeout.

Once connected, the client will attempt to stay connected regardless of
intermittent connection loss or Zookeeper session expiration. The client can be
instructed to drop a connection by calling stop:

zk.stop()

Listening for Connection Events

It can be useful to know when the connection has been dropped, restored, or
when the Zookeeper session has expired. To simplify this process Kazoo uses a
state system and lets you register listener functions to be called when the
state changes.

from kazoo.client import KazooState

def my_listener(state):
 if state == KazooState.LOST:
 # Register somewhere that the session was lost
 elif state == KazooState.SUSPENDED
 # Handle being disconnected from Zookeeper
 else:
 # Handle being connected/reconnected to Zookeeper

zk.add_listener(my_listener)

When using the kazoo.recipe.lock.Lock or creating ephemeral nodes, its
highly recommended to add a state listener so that your program can properly
deal with connection interruptions or a Zookeeper session loss.

Understanding Kazoo States

The KazooState object represents several states
the client transitions through. The current state of the client can always be
determined by viewing the state property. The
possible states are:

	LOST

	CONNECTED

	SUSPENDED

When a KazooClient instance is first created, it is in
the LOST state. After a connection is established it transitions to the
CONNECTED state. If any connection issues come up or if it needs to connect
to a different Zookeeper cluster node, it will transition to SUSPENDED to let
you know that commands cannot currently be run. The connection will also be
lost if the Zookeeper node is no longer part of the quorum, resulting in a
SUSPENDED state.

Upon re-establishing a connection the client could transition to LOST if the
session has expired, or CONNECTED if the session is still valid.

Note

These states should be monitored using a listener as described previously
so that the client behaves properly depending on the state of the
connection.

When a connection transitions to SUSPENDED, if the client is performing an
action that requires agreement with other systems (using the Lock recipe for
example), it should pause what it’s doing. When the connection has been
re-established the client can continue depending on if the state is LOST or
transitions directly to CONNECTED again.

When a connection transitions to LOST, any ephemeral nodes that have been
created will be removed by Zookeeper. This affects all recipes that create
ephemeral nodes, such as the Lock recipe. Lock’s will need to be re-acquired
after the state transitions to CONNECTED again. This transition occurs when
a session expires or when you stop the clients connection.

Valid State Transitions

	LOST -> CONNECTED

New connection, or previously lost one becoming connected.

	CONNECTED -> SUSPENDED

Connection loss to server occurred on a connection.

	CONNECTED -> LOST

Only occurs if invalid authentication credentials are provided after the
connection was established.

	SUSPENDED -> LOST

Connection resumed to server, but then lost as the session was expired.

	SUSPENDED -> CONNECTED

Connection that was lost has been restored.

Read-Only Connections

New in version 0.6.

Zookeeper 3.4 and above supports a read-only mode [http://wiki.apache.org/hadoop/ZooKeeper/GSoCReadOnlyMode]. This mode
must be turned on for the servers in the Zookeeper cluster for the
client to utilize it. To use this mode with Kazoo, the
KazooClient should be called with the
read_only option set to True. This will let the client connect to
a Zookeeper node that has gone read-only, and the client will continue
to scan for other nodes that are read-write.

from kazoo.client import KazooClient

zk = KazooClient(hosts='127.0.0.1:2181', read_only=True)
zk.start()

A new attribute on KeeperState has been
added, CONNECTED_RO. The connection states above are still valid,
however upon CONNECTED, you will need to check the clients non-
simplified state to see if the connection is CONNECTED_RO. For
example:

from kazoo.client import KazooState
from kazoo.client import KeeperState

@zk.add_listener
def watch_for_ro(state):
 if state == KazooState.CONNECTED:
 if zk.client_state == KeeperState.CONNECTED_RO:
 print("Read only mode!")
 else:
 print("Read/Write mode!")

It’s important to note that a KazooState is passed in to the listener
but the read-only information is only available by comparing the
non-simplified client state to the KeeperState object.

Warning

A client using read-only mode should not use any of the recipes.

Zookeeper CRUD

Zookeeper includes several functions for creating, reading, updating, and
deleting Zookeeper nodes (called znodes or nodes here). Kazoo adds several
convenience methods and a more Pythonic API.

Creating Nodes

Methods:

	ensure_path()

	create()

ensure_path() will recursively create the node
and any nodes in the path necessary along the way, but can not set the data for
the node, only the ACL.

create() creates a node and can set the data on
the node along with a watch function. It requires the path to it to exist
first, unless the makepath option is set to True.

Ensure a path, create if necessary
zk.ensure_path("/my/favorite")

Create a node with data
zk.create("/my/favorite/node", b"a value")

Reading Data

Methods:

	exists()

	get()

	get_children()

exists() checks to see if a node exists.

get() fetches the data of the node along with
detailed node information in a ZnodeStat
structure.

get_children() gets a list of the children of
a given node.

Determine if a node exists
if zk.exists("/my/favorite"):
 # Do something

Print the version of a node and its data
data, stat = zk.get("/my/favorite")
print("Version: %s, data: %s" % (stat.version, data.decode("utf-8")))

List the children
children = zk.get_children("/my/favorite")
print("There are %s children with names %s" % (len(children), children))

Updating Data

Methods:

	set()

set() updates the data for a given node. A
version for the node can be supplied, which will be required to match before
updating the data, or a BadVersionError will be
raised instead of updating.

zk.set("/my/favorite", b"some data")

Deleting Nodes

Methods:

	delete()

delete() deletes a node, and can optionally
recursively delete all children of the node as well. A version can be
supplied when deleting a node which will be required to match the version of
the node before deleting it or a BadVersionError
will be raised instead of deleting.

zk.delete("/my/favorite/node", recursive=True)

Retrying Commands

Connections to Zookeeper may get interrupted if the Zookeeper server goes down
or becomes unreachable. By default, kazoo does not retry commands, so these
failures will result in an exception being raised. To assist with failures
kazoo comes with a retry() helper that will
retry a function should one of the Zookeeper connection exceptions get raised.

Example:

result = zk.retry(zk.get, "/path/to/node")

Some commands may have unique behavior that doesn’t warrant automatic retries
on a per command basis. For example, if one creates a node a connection might
be lost before the command returns successfully but the node actually got
created. This results in a kazoo.exceptions.NodeExistsError being
raised when it runs again. A similar unique situation arises when a node is
created with ephemeral and sequence options set,
documented here on the Zookeeper site [http://zookeeper.apache.org/doc/trunk/recipes.html#sc_recipes_errorHandlingNote].

Since the retry() method takes a function to
call and its arguments, a function that runs multiple Zookeeper commands could
be passed to it so that the entire function will be retried if the connection
is lost.

This snippet from the lock implementation shows how it uses retry to re-run the
function acquiring a lock, and checks to see if it was already created to
handle this condition:

kazoo.recipe.lock snippet

def acquire(self):
 """Acquire the mutex, blocking until it is obtained"""
 try:
 self.client.retry(self._inner_acquire)
 self.is_acquired = True
 except KazooException:
 # if we did ultimately fail, attempt to clean up
 self._best_effort_cleanup()
 self.cancelled = False
 raise

def _inner_acquire(self):
 self.wake_event.clear()

 # make sure our election parent node exists
 if not self.assured_path:
 self.client.ensure_path(self.path)

 node = None
 if self.create_tried:
 node = self._find_node()
 else:
 self.create_tried = True

 if not node:
 node = self.client.create(self.create_path, self.data,
 ephemeral=True, sequence=True)
 # strip off path to node
 node = node[len(self.path) + 1:]

create_tried records whether it has tried to create the node already in the
event the connection is lost before the node name is returned.

Custom Retries

Sometimes you may wish to have specific retry policies for a command or
set of commands that differs from the
retry() method. You can manually create
a KazooRetry instance with the specific retry
policy you prefer:

from kazoo.retry import KazooRetry

kr = KazooRetry(max_tries=3, ignore_expire=False)
result = kr(client.get, "/some/path")

This will retry the client.get command up to 3 times, and raise a
session expiration if it occurs. You can also make an instance with the
default behavior that ignores session expiration during a retry.

Watchers

Kazoo can set watch functions on a node that can be triggered either when the
node has changed or when the children of the node change. This change to the
node or children can also be the node or its children being deleted.

Watchers can be set in two different ways, the first is the style that
Zookeeper supports by default for one-time watch events. These watch functions
will be called once by kazoo, and do not receive session events, unlike the
native Zookeeper watches. Using this style requires the watch function to be
passed to one of these methods:

	get()

	get_children()

	exists()

A watch function passed to get() or
exists() will be called when the data on the
node changes or the node itself is deleted. It will be passed a
WatchedEvent instance.

def my_func(event):
 # check to see what the children are now

Call my_func when the children change
children = zk.get_children("/my/favorite/node", watch=my_func)

Kazoo includes a higher level API that watches for data and children
modifications that’s easier to use as it doesn’t require re-setting the watch
every time the event is triggered. It also passes in the data and
ZnodeStat when watching a node or the list of
children when watching a nodes children. Watch functions registered with this
API will be called immediately and every time there’s a change, or until the
function returns False. If allow_session_lost is set to True, then the
function will no longer be called if the session is lost.

The following methods provide this functionality:

	ChildrenWatch

	DataWatch

These classes are available directly on the KazooClient
instance and don’t require the client object to be passed in when used in this
manner. The instance returned by instantiating either of the classes can be
called directly allowing them to be used as decorators:

@zk.ChildrenWatch("/my/favorite/node")
def watch_children(children):
 print("Children are now: %s" % children)
Above function called immediately, and from then on

@zk.DataWatch("/my/favorite")
def watch_node(data, stat):
 print("Version: %s, data: %s" % (stat.version, data.decode("utf-8")))

Transactions

New in version 0.6.

Zookeeper 3.4 and above supports the sending of multiple commands at
once that will be committed as a single atomic unit. Either they will
all succeed or they will all fail. The result of a transaction will be
a list of the success/failure results for each command in the
transaction.

transaction = zk.transaction()
transaction.check('/node/a', version=3)
transaction.create('/node/b', b"a value")
results = transaction.commit()

The transaction() method returns a
TransactionRequest instance. It’s methods may be
called to queue commands to be completed in the transaction. When the
transaction is ready to be sent, the
commit() method on it is called.

In the example above, there’s a command not available unless a
transaction is being used, check. This can check nodes for a specific
version, which could be used to make the transaction fail if a node
doesn’t match a version that it should be at. In this case the node
/node/a must be at version 3 or /node/b will not be created.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

Asynchronous Usage

The asynchronous Kazoo API relies on the
IAsyncResult object which is returned by all the
asynchronous methods. Callbacks can be added with the
rawlink() method which works in a
consistent manner whether threads or an asynchronous framework like gevent is
used.

Kazoo utilizes a pluggable IHandler interface which
abstracts the callback system to ensure it works consistently.

Connection Handling

Creating a connection:

from kazoo.client import KazooClient
from kazoo.handlers.gevent import SequentialGeventHandler

zk = KazooClient(handler=SequentialGeventHandler())

returns immediately
event = zk.start_async()

Wait for 30 seconds and see if we're connected
event.wait(timeout=30)

if not zk.connected:
 # Not connected, stop trying to connect
 zk.stop()
 raise Exception("Unable to connect.")

In this example, the wait method is used on the event object returned by the
start_async() method. A timeout is always
used because its possible that we might never connect and that should be
handled gracefully.

The SequentialGeventHandler is used when you
want to use gevent. Kazoo doesn’t rely on gevents monkey patching and requires
that you pass in the appropriate handler, the default handler is
SequentialThreadingHandler.

Asynchronous Callbacks

All kazoo _async methods except for
start_async() return an
IAsyncResult instance. These instances allow
you to see when a result is ready, or chain one or more callback
functions to the result that will be called when it’s ready.

The callback function will be passed the
IAsyncResult instance and should call the
get() method on it to retrieve
the value. This call could result in an exception being raised
if the asynchronous function encountered an error. It should be caught
and handled appropriately.

Example:

import sys

from kazoo.exceptions import ConnectionLossException
from kazoo.exceptions import NoAuthException

def my_callback(async_obj):
 try:
 children = async_obj.get()
 do_something(children)
 except (ConnectionLossException, NoAuthException):
 sys.exit(1)

Both these statements return immediately, the second sets a callback
that will be run when get_children_async has its return value
async_obj = zk.get_children_async("/some/node")
async_obj.rawlink(my_callback)

Zookeeper CRUD

The following CRUD methods all work the same as their synchronous counterparts
except that they return an IAsyncResult object.

Creating Method:

	create_async()

Reading Methods:

	exists_async()

	get_async()

	get_children_async()

Updating Methods:

	set_async()

Deleting Methods:

	delete_async()

The ensure_path() has no asynchronous
counterpart at the moment nor can the
delete_async() method do recursive deletes.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

Implementation Details

Up to version 0.3 kazoo used the Python bindings to the Zookeeper C library.
Unfortunately those bindings are fairly buggy and required a fair share of
weird workarounds to interface with the native OS thread used in those
bindings.

Starting with version 0.4 kazoo implements the entire Zookeeper wire protocol
itself in pure Python. Doing so removed the need for the workarounds and made
it much easier to implement the features missing in the C bindings.

Handlers

Both the Kazoo handlers run 3 separate queues to help alleviate deadlock issues
and ensure consistent execution order regardless of environment. The
SequentialGeventHandler runs a separate
greenlet for each queue that processes the callbacks queued in order. The
SequentialThreadingHandler runs a separate
thread for each queue that processes the callbacks queued in order (thus the
naming scheme which notes they are sequential in anticipation that there could
be handlers shipped in the future which don’t make this guarantee).

Callbacks are queued by type, the 3 types being:

	Session events (State changes, registered listener functions)

	Watch events (Watch callbacks, DataWatch, and ChildrenWatch functions)

	Completion callbacks (Functions chained to
IAsyncResult objects)

This ensures that calls can be made to Zookeeper from any callback except for
a state listener without worrying that critical session events will be
blocked.

Warning

Its important to remember that if you write code that blocks in one of
these functions then no queued functions of that type will be executed
until the code stops blocking. If your code might block, it should run
itself in a separate greenlet/thread so that the other callbacks can
run.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

Testing

Kazoo has several test harnesses used internally for its own tests that are
exposed as public API’s for use in your own tests for common Zookeeper cluster
management and session testing. They can be mixed in with your own unittest
or nose tests along with a mock object that allows you to force specific
KazooClient commands to fail in various ways.

The test harness needs to be able to find the Zookeeper Java libraries. You
need to specify an environment variable called ZOOKEEPER_PATH and point it
to their location, for example /usr/share/java. The directory should contain
a zookeeper-*.jar and a lib directory containing at least a log4j-*.jar.

If your Java setup is complex, you may also override our classpath mechanism
completely by specifying an environment variable called ZOOKEEPER_CLASSPATH.
If provided, it will be used unmodified as the Java classpath for Zookeeper.

Kazoo Test Harness

The KazooTestHarness can be used directly or
mixed in with your test code.

Example:

from kazoo.testing import KazooTestHarness

class MyTest(KazooTestHarness):
 def setUp(self):
 self.setup_zookeeper()

 def tearDown(self):
 self.teardown_zookeeper()

 def testmycode(self):
 self.client.ensure_path('/test/path')
 result = self.client.get('/test/path')
 ...

Kazoo Test Case

The KazooTestCase is complete test case that
is equivalent to the mixin setup of
KazooTestHarness. An equivalent test to the
one above:

from kazoo.testing import KazooTestCase

class MyTest(KazooTestCase):
 def testmycode(self):
 self.client.ensure_path('/test/path')
 result = self.client.get('/test/path')
 ...

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

API Documentation

Comprehensive reference material for every public API exposed by
kazoo is available within this chapter. The API documentation is
organized alphabetically by module name.

	kazoo.client

	kazoo.exceptions

	kazoo.handlers.gevent

	kazoo.handlers.threading

	kazoo.handlers.utils

	kazoo.interfaces

	kazoo.protocol.states

	kazoo.recipe.barrier

	kazoo.recipe.counter

	kazoo.recipe.election

	kazoo.recipe.lock

	kazoo.recipe.partitioner

	kazoo.recipe.party

	kazoo.recipe.queue

	kazoo.recipe.watchers

	kazoo.retry

	kazoo.security

	kazoo.testing.harness

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.client

Kazoo Zookeeper Client

Public API

	
class kazoo.client.KazooClient[source]

	An Apache Zookeeper Python client supporting alternate callback
handlers and high-level functionality.

Watch functions registered with this class will not get session
events, unlike the default Zookeeper watches. They will also be
called with a single argument, a
WatchedEvent instance.

	
__init__(hosts='127.0.0.1:2181', timeout=10.0, client_id=None, handler=None, default_acl=None, auth_data=None, read_only=None, randomize_hosts=True, connection_retry=None, command_retry=None, logger=None, **kwargs)[source]

	Create a KazooClient instance. All time arguments
are in seconds.

	Parameters:	
	hosts – Comma-separated list of hosts to connect to
(e.g. 127.0.0.1:2181,127.0.0.1:2182,[::1]:2183).

	timeout – The longest to wait for a Zookeeper connection.

	client_id – A Zookeeper client id, used when
re-establishing a prior session connection.

	handler – An instance of a class implementing the
IHandler interface
for callback handling.

	default_acl – A default ACL used on node creation.

	auth_data – A list of authentication credentials to use for the
connection. Should be a list of (scheme, credential)
tuples as add_auth() takes.

	read_only – Allow connections to read only servers.

	randomize_hosts – By default randomize host selection.

	connection_retry – A kazoo.retry.KazooRetry object to use for
retrying the connection to Zookeeper. Also can be a dict of
options which will be used for creating one.

	command_retry – A kazoo.retry.KazooRetry object to use for
the KazooClient.retry() method. Also can be a dict of
options which will be used for creating one.

	logger – A custom logger to use instead of the module
global log instance.

Basic Example:

zk = KazooClient()
zk.start()
children = zk.get_children('/')
zk.stop()

As a convenience all recipe classes are available as attributes
and get automatically bound to the client. For example:

zk = KazooClient()
zk.start()
lock = zk.Lock('/lock_path')

New in version 0.6: The read_only option. Requires Zookeeper 3.4+

New in version 0.6: The retry_max_delay option.

New in version 0.6: The randomize_hosts option.

Changed in version 0.8: Removed the unused watcher argument (was second argument).

New in version 1.2: The connection_retry, command_retry and logger options.

	
handler

	The IHandler strategy used by this
client. Gives access to appropriate synchronization objects.

	
retry(func, *args, **kwargs)

	Runs the given function with the provided arguments, retrying if it
fails because the ZooKeeper connection is lost,
see Retrying Commands.

	
state

	A KazooState attribute indicating
the current higher-level connection state.

	
client_state[source]

	Returns the last Zookeeper client state

This is the non-simplified state information and is generally
not as useful as the simplified KazooState information.

	
client_id[source]

	Returns the client id for this Zookeeper session if
connected.

	Returns:	client id which consists of the session id and
password.

	Return type:	tuple

	
connected[source]

	Returns whether the Zookeeper connection has been
established.

	
add_listener(listener)[source]

	Add a function to be called for connection state changes.

This function will be called with a
KazooState instance indicating
the new connection state on state transitions.

Warning

This function must not block. If its at all likely that it
might need data or a value that could result in blocking
than the spawn() method
should be used so that the listener can return immediately.

	
remove_listener(listener)[source]

	Remove a listener function

	
start(timeout=15)[source]

	Initiate connection to ZK.

	Parameters:	timeout – Time in seconds to wait for connection to
succeed.

	Raises :	timeout_exception
if the connection wasn’t established within timeout
seconds.

	
start_async()[source]

	Asynchronously initiate connection to ZK.

	Returns:	An event object that can be checked to see if the
connection is alive.

	Return type:	Event compatible object.

	
stop()[source]

	Gracefully stop this Zookeeper session.

This method can be called while a reconnection attempt is in
progress, which will then be halted.

Once the connection is closed, its session becomes invalid. All
the ephemeral nodes in the ZooKeeper server associated with the
session will be removed. The watches left on those nodes (and
on their parents) will be triggered.

	
restart()[source]

	Stop and restart the Zookeeper session.

	
close()[source]

	Free any resources held by the client.

This method should be called on a stopped client before it is
discarded. Not doing so may result in filehandles being leaked.

New in version 1.0.

	
command(cmd='ruok')[source]

	Sent a management command to the current ZK server.

Examples are ruok, envi or stat.

	Returns:	An unstructured textual response.

	Return type:	str

	Raises :	ConnectionLoss if there is no connection open, or
possibly a socket.error if there’s a problem with
the connection used just for this command.

New in version 0.5.

	
server_version()[source]

	Get the version of the currently connected ZK server.

	Returns:	The server version, for example (3, 4, 3).

	Return type:	tuple

New in version 0.5.

	
add_auth(scheme, credential)[source]

	Send credentials to server.

	Parameters:	
	scheme – authentication scheme (default supported:
“digest”).

	credential – the credential – value depends on scheme.

	
add_auth_async(scheme, credential)[source]

	Asynchronously send credentials to server. Takes the same
arguments as add_auth().

	Return type:	IAsyncResult

	
unchroot(path)[source]

	Strip the chroot if applicable from the path.

	
sync_async(path)[source]

	Asynchronous sync.

	Return type:	IAsyncResult

	
sync(path)[source]

	Sync, blocks until response is acknowledged.

Flushes channel between process and leader.

	Parameters:	path – path of node.

	Returns:	The node path that was synced.

	Raises :	ZookeeperError if the server
returns a non-zero error code.

New in version 0.5.

	
create(path, value='', acl=None, ephemeral=False, sequence=False, makepath=False)[source]

	Create a node with the given value as its data. Optionally
set an ACL on the node.

The ephemeral and sequence arguments determine the type of the
node.

An ephemeral node will be automatically removed by ZooKeeper
when the session associated with the creation of the node
expires.

A sequential node will be given the specified path plus a
suffix i where i is the current sequential number of the
node. The sequence number is always fixed length of 10 digits,
0 padded. Once such a node is created, the sequential number
will be incremented by one.

If a node with the same actual path already exists in
ZooKeeper, a NodeExistsError will be raised. Note that since a
different actual path is used for each invocation of creating
sequential nodes with the same path argument, the call will
never raise NodeExistsError.

If the parent node does not exist in ZooKeeper, a NoNodeError
will be raised. Setting the optional makepath argument to
True will create all missing parent nodes instead.

An ephemeral node cannot have children. If the parent node of
the given path is ephemeral, a NoChildrenForEphemeralsError
will be raised.

This operation, if successful, will trigger all the watches
left on the node of the given path by exists() and
get() API calls, and the watches left on the parent node
by get_children() API calls.

The maximum allowable size of the node value is 1 MB. Values
larger than this will cause a ZookeeperError to be raised.

	Parameters:	
	path – Path of node.

	value – Initial bytes value of node.

	acl – ACL list.

	ephemeral – Boolean indicating whether node is ephemeral
(tied to this session).

	sequence – Boolean indicating whether path is suffixed
with a unique index.

	makepath – Whether the path should be created if it
doesn’t exist.

	Returns:	Real path of the new node.

	Return type:	str

	Raises :	NodeExistsError if the node
already exists.

NoNodeError if parent nodes are
missing.

NoChildrenForEphemeralsError if
the parent node is an ephemeral node.

ZookeeperError if the provided
value is too large.

ZookeeperError if the server
returns a non-zero error code.

	
create_async(path, value='', acl=None, ephemeral=False, sequence=False, makepath=False)[source]

	Asynchronously create a ZNode. Takes the same arguments as
create().

	Return type:	IAsyncResult

New in version 1.1: The makepath option.

	
ensure_path(path, acl=None)[source]

	Recursively create a path if it doesn’t exist.

	Parameters:	
	path – Path of node.

	acl – Permissions for node.

	
ensure_path_async(path, acl=None)[source]

	Recursively create a path asynchronously if it doesn’t
exist. Takes the same arguments as ensure_path().

	Return type:	IAsyncResult

New in version 1.1.

	
exists(path, watch=None)[source]

	Check if a node exists.

If a watch is provided, it will be left on the node with the
given path. The watch will be triggered by a successful
operation that creates/deletes the node or sets the data on the
node.

	Parameters:	
	path – Path of node.

	watch – Optional watch callback to set for future changes
to this path.

	Returns:	ZnodeStat of the node if it exists, else None if the
node does not exist.

	Return type:	ZnodeStat or None.

	Raises :	ZookeeperError if the server
returns a non-zero error code.

	
exists_async(path, watch=None)[source]

	Asynchronously check if a node exists. Takes the same
arguments as exists().

	Return type:	IAsyncResult

	
get(path, watch=None)[source]

	Get the value of a node.

If a watch is provided, it will be left on the node with the
given path. The watch will be triggered by a successful
operation that sets data on the node, or deletes the node.

	Parameters:	
	path – Path of node.

	watch – Optional watch callback to set for future changes
to this path.

	Returns:	Tuple (value, ZnodeStat) of
node.

	Return type:	tuple

	Raises :	NoNodeError if the node doesn’t
exist

ZookeeperError if the server
returns a non-zero error code

	
get_async(path, watch=None)[source]

	Asynchronously get the value of a node. Takes the same
arguments as get().

	Return type:	IAsyncResult

	
get_children(path, watch=None, include_data=False)[source]

	Get a list of child nodes of a path.

If a watch is provided it will be left on the node with the
given path. The watch will be triggered by a successful
operation that deletes the node of the given path or
creates/deletes a child under the node.

The list of children returned is not sorted and no guarantee is
provided as to its natural or lexical order.

	Parameters:	
	path – Path of node to list.

	watch – Optional watch callback to set for future changes
to this path.

	include_data – Include the ZnodeStat of
the node in addition to the children. This option changes
the return value to be a tuple of (children, stat).

	Returns:	List of child node names, or tuple if include_data
is True.

	Return type:	list

	Raises :	NoNodeError if the node doesn’t
exist.

ZookeeperError if the server
returns a non-zero error code.

New in version 0.5: The include_data option.

	
get_children_async(path, watch=None, include_data=False)[source]

	Asynchronously get a list of child nodes of a path. Takes
the same arguments as get_children().

	Return type:	IAsyncResult

	
get_acls(path)[source]

	Return the ACL and stat of the node of the given path.

	Parameters:	path – Path of the node.

	Returns:	The ACL array of the given node and its
ZnodeStat.

	Return type:	tuple of (ACL list,
ZnodeStat)

	Raises :	NoNodeError if the node doesn’t
exist.

ZookeeperError if the server
returns a non-zero error code

New in version 0.5.

	
get_acls_async(path)[source]

	Return the ACL and stat of the node of the given path. Takes
the same arguments as get_acls().

	Return type:	IAsyncResult

	
set_acls(path, acls, version=-1)[source]

	Set the ACL for the node of the given path.

Set the ACL for the node of the given path if such a node
exists and the given version matches the version of the node.

	Parameters:	
	path – Path for the node.

	acls – List of ACL objects to
set.

	version – The expected node version that must match.

	Returns:	The stat of the node.

	Raises :	BadVersionError if version doesn’t
match.

NoNodeError if the node doesn’t
exist.

InvalidACLError if the ACL is
invalid.

ZookeeperError if the server
returns a non-zero error code.

New in version 0.5.

	
set_acls_async(path, acls, version=-1)[source]

	Set the ACL for the node of the given path. Takes the same
arguments as set_acls().

	Return type:	IAsyncResult

	
set(path, value, version=-1)[source]

	Set the value of a node.

If the version of the node being updated is newer than the
supplied version (and the supplied version is not -1), a
BadVersionError will be raised.

This operation, if successful, will trigger all the watches on
the node of the given path left by get() API calls.

The maximum allowable size of the value is 1 MB. Values larger
than this will cause a ZookeeperError to be raised.

	Parameters:	
	path – Path of node.

	value – New data value.

	version – Version of node being updated, or -1.

	Returns:	Updated ZnodeStat of
the node.

	Raises :	BadVersionError if version doesn’t
match.

NoNodeError if the node doesn’t
exist.

ZookeeperError if the provided
value is too large.

ZookeeperError if the server
returns a non-zero error code.

	
set_async(path, value, version=-1)[source]

	Set the value of a node. Takes the same arguments as
set().

	Return type:	IAsyncResult

	
transaction()[source]

	Create and return a TransactionRequest object

Creates a TransactionRequest object. A Transaction can
consist of multiple operations which can be committed as a
single atomic unit. Either all of the operations will succeed
or none of them.

	Returns:	A TransactionRequest.

	Return type:	TransactionRequest

New in version 0.6: Requires Zookeeper 3.4+

	
delete(path, version=-1, recursive=False)[source]

	Delete a node.

The call will succeed if such a node exists, and the given
version matches the node’s version (if the given version is -1,
the default, it matches any node’s versions).

This operation, if successful, will trigger all the watches on
the node of the given path left by exists API calls, and the
watches on the parent node left by get_children API calls.

	Parameters:	
	path – Path of node to delete.

	version – Version of node to delete, or -1 for any.

	recursive (bool) – Recursively delete node and all its children,
defaults to False.

	Raises :	BadVersionError if version doesn’t
match.

NoNodeError if the node doesn’t
exist.

NotEmptyError if the node has
children.

ZookeeperError if the server
returns a non-zero error code.

	
delete_async(path, version=-1)[source]

	Asynchronously delete a node. Takes the same arguments as
delete(), with the exception of recursive.

	Return type:	IAsyncResult

	
class kazoo.client.TransactionRequest(client)[source]

	A Zookeeper Transaction Request

A Transaction provides a builder object that can be used to
construct and commit an atomic set of operations. The transaction
must be committed before its sent.

Transactions are not thread-safe and should not be accessed from
multiple threads at once.

New in version 0.6: Requires Zookeeper 3.4+

	
create(path, value='', acl=None, ephemeral=False, sequence=False)[source]

	Add a create ZNode to the transaction. Takes the same
arguments as KazooClient.create(), with the exception
of makepath.

	Returns:	None

	
delete(path, version=-1)[source]

	Add a delete ZNode to the transaction. Takes the same
arguments as KazooClient.delete(), with the exception of
recursive.

	
set_data(path, value, version=-1)[source]

	Add a set ZNode value to the transaction. Takes the same
arguments as KazooClient.set().

	
check(path, version)[source]

	Add a Check Version to the transaction.

This command will fail and abort a transaction if the path
does not match the specified version.

	
commit_async()[source]

	Commit the transaction asynchronously.

	Return type:	IAsyncResult

	
commit()[source]

	Commit the transaction.

	Returns:	A list of the results for each operation in the
transaction.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.exceptions

Kazoo Exceptions

Public API

	
exception kazoo.exceptions.KazooException[source]

	Base Kazoo exception that all other kazoo library exceptions
inherit from

	
exception kazoo.exceptions.ZookeeperError[source]

	Base Zookeeper exception for errors originating from the
Zookeeper server

	
exception kazoo.exceptions.AuthFailedError[source]

	

	
exception kazoo.exceptions.BadVersionError[source]

	

	
exception kazoo.exceptions.ConfigurationError[source]

	Raised if the configuration arguments to an object are
invalid

	
exception kazoo.exceptions.InvalidACLError[source]

	

	
exception kazoo.exceptions.LockTimeout[source]

	Raised if failed to acquire a lock.

New in version 1.1.

	
exception kazoo.exceptions.NoChildrenForEphemeralsError[source]

	

	
exception kazoo.exceptions.NodeExistsError[source]

	

	
exception kazoo.exceptions.NoNodeError[source]

	

	
exception kazoo.exceptions.NotEmptyError[source]

	

Private API

	
exception kazoo.exceptions.APIError[source]

	

	
exception kazoo.exceptions.BadArgumentsError[source]

	

	
exception kazoo.exceptions.CancelledError[source]

	Raised when a process is cancelled by another thread

	
exception kazoo.exceptions.ConnectionDropped[source]

	Internal error for jumping out of loops

	
exception kazoo.exceptions.ConnectionClosedError[source]

	Connection is closed

	
exception kazoo.exceptions.ConnectionLoss[source]

	

	
exception kazoo.exceptions.DataInconsistency[source]

	

	
exception kazoo.exceptions.MarshallingError[source]

	

	
exception kazoo.exceptions.NoAuthError[source]

	

	
exception kazoo.exceptions.NotReadOnlyCallError[source]

	An API call that is not read-only was used while connected to
a read-only server

	
exception kazoo.exceptions.InvalidCallbackError[source]

	

	
exception kazoo.exceptions.OperationTimeoutError[source]

	

	
exception kazoo.exceptions.RolledBackError[source]

	

	
exception kazoo.exceptions.RuntimeInconsistency[source]

	

	
exception kazoo.exceptions.SessionExpiredError[source]

	

	
exception kazoo.exceptions.SessionMovedError[source]

	

	
exception kazoo.exceptions.SystemZookeeperError[source]

	

	
exception kazoo.exceptions.UnimplementedError[source]

	

	
exception kazoo.exceptions.WriterNotClosedException[source]

	Raised if the writer is unable to stop closing when requested.

New in version 1.2.

	
exception kazoo.exceptions.ZookeeperStoppedError[source]

	Raised when the kazoo client stopped (and thus not connected)

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.handlers.gevent

A gevent based handler.

Public API

	
class kazoo.handlers.gevent.SequentialGeventHandler[source]

	Gevent handler for sequentially executing callbacks.

This handler executes callbacks in a sequential manner. A queue is
created for each of the callback events, so that each type of event
has its callback type run sequentially.

Each queue type has a greenlet worker that pulls the callback event
off the queue and runs it in the order the client sees it.

This split helps ensure that watch callbacks won’t block session
re-establishment should the connection be lost during a Zookeeper
client call.

Watch callbacks should avoid blocking behavior as the next callback
of that type won’t be run until it completes. If you need to block,
spawn a new greenlet and return immediately so callbacks can
proceed.

	
async_result()[source]

	Create a AsyncResult instance

The AsyncResult instance will have its completion
callbacks executed in the thread the
SequentialGeventHandler is created in (which should be
the gevent/main thread).

	
dispatch_callback(callback)[source]

	Dispatch to the callback object

The callback is put on separate queues to run depending on the
type as documented for the SequentialGeventHandler.

	
event_object()[source]

	Create an appropriate Event object

	
lock_object()[source]

	Create an appropriate Lock object

	
rlock_object()[source]

	Create an appropriate RLock object

	
static sleep_func(seconds=0, ref=True)

	Put the current greenlet to sleep for at least seconds.

seconds may be specified as an integer, or a float if fractional seconds
are desired.

If ref is false, the greenlet running sleep() will not prevent gevent.wait()
from exiting.

	
spawn(func, *args, **kwargs)[source]

	Spawn a function to run asynchronously

	
start()[source]

	Start the greenlet workers.

	
stop()[source]

	Stop the greenlet workers and empty all queues.

Private API

	
class kazoo.handlers.gevent.AsyncResult

	A one-time event that stores a value or an exception.

Like Event it wakes up all the waiters when set() or set_exception() method
is called. Waiters may receive the passed value or exception by calling get()
method instead of wait(). An AsyncResult instance cannot be reset.

To pass a value call set(). Calls to get() (those that currently blocking as well as
those made in the future) will return the value:

>>> result = AsyncResult()
>>> result.set(100)
>>> result.get()
100

To pass an exception call set_exception(). This will cause get() to raise that exception:

>>> result = AsyncResult()
>>> result.set_exception(RuntimeError('failure'))
>>> result.get()
Traceback (most recent call last):
 ...
RuntimeError: failure

AsyncResult implements __call__() and thus can be used as link() target:

>>> import gevent
>>> result = AsyncResult()
>>> gevent.spawn(lambda : 1/0).link(result)
>>> result.get()
Traceback (most recent call last):
 ...
ZeroDivisionError: integer division or modulo by zero

	
exception

	Holds the exception instance passed to set_exception() if set_exception() was called.
Otherwise None.

	
get(block=True, timeout=None)

	Return the stored value or raise the exception.

If this instance already holds a value / an exception, return / raise it immediatelly.
Otherwise, block until another greenlet calls set() or set_exception() or
until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

	
get_nowait()

	Return the value or raise the exception without blocking.

If nothing is available, raise gevent.Timeout immediatelly.

	
rawlink(callback)

	Register a callback to call when a value or an exception is set.

callback will be called in the Hub, so it must not use blocking gevent API.
callback will be passed one argument: this instance.

	
ready()

	Return true if and only if it holds a value or an exception

	
set(value=None)

	Store the value. Wake up the waiters.

All greenlets blocking on get() or wait() are woken up.
Sequential calls to wait() and get() will not block at all.

	
set_exception(exception)

	Store the exception. Wake up the waiters.

All greenlets blocking on get() or wait() are woken up.
Sequential calls to wait() and get() will not block at all.

	
successful()

	Return true if and only if it is ready and holds a value

	
unlink(callback)

	Remove the callback set by rawlink()

	
wait(timeout=None)

	Block until the instance is ready.

If this instance already holds a value / an exception, return immediatelly.
Otherwise, block until another thread calls set() or set_exception() or
until the optional timeout occurs.

When the timeout argument is present and not None, it should be a
floating point number specifying a timeout for the operation in seconds
(or fractions thereof).

Return value.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.handlers.threading

A threading based handler.

The SequentialThreadingHandler is intended for regular Python
environments that use threads.

Warning

Do not use SequentialThreadingHandler with applications
using asynchronous event loops (like gevent). Use the
SequentialGeventHandler instead.

Public API

	
class kazoo.handlers.threading.SequentialThreadingHandler[source]

	Threading handler for sequentially executing callbacks.

This handler executes callbacks in a sequential manner. A queue is
created for each of the callback events, so that each type of event
has its callback type run sequentially. These are split into two
queues, one for watch events and one for async result completion
callbacks.

Each queue type has a thread worker that pulls the callback event
off the queue and runs it in the order the client sees it.

This split helps ensure that watch callbacks won’t block session
re-establishment should the connection be lost during a Zookeeper
client call.

Watch and completion callbacks should avoid blocking behavior as
the next callback of that type won’t be run until it completes. If
you need to block, spawn a new thread and return immediately so
callbacks can proceed.

Note

Completion callbacks can block to wait on Zookeeper calls, but
no other completion callbacks will execute until the callback
returns.

	
async_result()[source]

	Create a AsyncResult instance

	
dispatch_callback(callback)[source]

	Dispatch to the callback object

The callback is put on separate queues to run depending on the
type as documented for the SequentialThreadingHandler.

	
event_object()[source]

	Create an appropriate Event object

	
lock_object()[source]

	Create a lock object

	
rlock_object()[source]

	Create an appropriate RLock object

	
sleep_func()

	sleep(seconds)

Delay execution for a given number of seconds. The argument may be
a floating point number for subsecond precision.

	
start()[source]

	Start the worker threads.

	
stop()[source]

	Stop the worker threads and empty all queues.

Private API

	
class kazoo.handlers.threading.AsyncResult(handler)[source]

	A one-time event that stores a value or an exception

	
get(block=True, timeout=None)[source]

	Return the stored value or raise the exception.

If there is no value raises TimeoutError.

	
get_nowait()[source]

	Return the value or raise the exception without blocking.

If nothing is available, raises TimeoutError

	
rawlink(callback)[source]

	Register a callback to call when a value or an exception is
set

	
ready()[source]

	Return true if and only if it holds a value or an
exception

	
set(value=None)[source]

	Store the value. Wake up the waiters.

	
set_exception(exception)[source]

	Store the exception. Wake up the waiters.

	
successful()[source]

	Return true if and only if it is ready and holds a value

	
unlink(callback)[source]

	Remove the callback set by rawlink()

	
wait(timeout=None)[source]

	Block until the instance is ready.

	
exception kazoo.handlers.threading.TimeoutError[source]

	

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.handlers.utils

Kazoo handler helpers

Public API

	
kazoo.handlers.utils.capture_exceptions(async_result)[source]

	Return a new decorated function that propagates the exceptions of the
wrapped function to an async_result.

	Parameters:	async_result – An async result implementing IAsyncResult

	
kazoo.handlers.utils.wrap(async_result)[source]

	Return a new decorated function that propagates the return value or
exception of wrapped function to an async_result. NOTE: Only propagates a
non-None return value.

	Parameters:	async_result – An async result implementing IAsyncResult

Private API

	
kazoo.handlers.utils.create_pipe()[source]

	Create a non-blocking read/write pipe.

	
kazoo.handlers.utils.create_tcp_socket(module)[source]

	Create a TCP socket with the CLOEXEC flag set.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.interfaces

Kazoo Interfaces

Public API

IHandler implementations should be created by the developer to be
passed into KazooClient during instantiation for the
preferred callback handling.

If the developer needs to use objects implementing the IAsyncResult
interface, the IHandler.async_result() method must be used instead of
instantiating one directly.

	
interface kazoo.interfaces.IHandler[source]

	A Callback Handler for Zookeeper completion and watch callbacks

This object must implement several methods responsible for
determining how completion / watch callbacks are handled as well as
the method for calling IAsyncResult callback functions.

These functions are used to abstract differences between a Python
threading environment and asynchronous single-threaded environments
like gevent. The minimum functionality needed for Kazoo to handle
these differences is encompassed in this interface.

The Handler should document how callbacks are called for:

	Zookeeper completion events

	Zookeeper watch events

	
spawn(func, *args, **kwargs)[source]

	Spawn a function to run asynchronously

	Parameters:	
	args – args to call the function with.

	kwargs – keyword args to call the function with.

This method should return immediately and execute the function
with the provided args and kwargs in an asynchronous manner.

	
dispatch_callback(callback)[source]

	Dispatch to the callback object

	Parameters:	callback – A Callback
object to be called.

	
name

	Human readable name of the Handler interface

	
rlock_object()[source]

	Return an appropriate object that implements Python’s
threading.RLock API

	
stop()[source]

	Stop the handler. Should block until the handler is safely
stopped.

	
sleep_func

	Appropriate sleep function that can be called with a single
argument and sleep.

	
event_object()[source]

	Return an appropriate object that implements Python’s
threading.Event API

	
create_connection()[source]

	A socket method that implements Python’s
socket.create_connection API

	
start()[source]

	Start the handler, used for setting up the handler.

	
lock_object()[source]

	Return an appropriate object that implements Python’s
threading.Lock API

	
timeout_exception

	Exception class that should be thrown and captured if a
result is not available within the given time

	
async_result()[source]

	Return an instance that conforms to the
IAsyncResult interface appropriate for this
handler

	
select()[source]

	A select method that implements Python’s select.select
API

	
socket()[source]

	A socket method that implements Python’s socket.socket
API

Private API

The IAsyncResult documents the proper implementation for providing
a value that results from a Zookeeper completion callback. Since the
KazooClient returns an IAsyncResult object
instead of taking a completion callback for async functions, developers
wishing to have their own callback called should use the
IAsyncResult.rawlink() method.

	
interface kazoo.interfaces.IAsyncResult[source]

	An Async Result object that can be queried for a value that has
been set asynchronously

This object is modeled on the gevent AsyncResult object.

The implementation must account for the fact that the set()
and set_exception() methods will be called from within the
Zookeeper thread which may require extra care under asynchronous
environments.

	
set(value=None)[source]

	Store the value. Wake up the waiters.

	Parameters:	value – Value to store as the result.

Any waiters blocking on get() or wait() are woken
up. Sequential calls to wait() and get() will not
block at all.

	
get_nowait()[source]

	Return the value or raise the exception without blocking.

If nothing is available, raise the Timeout exception class on
the associated IHandler interface.

	
set_exception(exception)[source]

	Store the exception. Wake up the waiters.

	Parameters:	exception – Exception to raise when fetching the value.

Any waiters blocking on get() or wait() are woken
up. Sequential calls to wait() and get() will not
block at all.

	
successful()[source]

	Return True if and only if it is ready and holds a
value

	
get(block=True, timeout=None)[source]

	Return the stored value or raise the exception

	Parameters:	
	block (bool) – Whether this method should block or return
immediately.

	timeout (float) – How long to wait for a value when block is
True.

If this instance already holds a value / an exception, return /
raise it immediately. Otherwise, block until set() or
set_exception() has been called or until the optional
timeout occurs.

	
exception

	Holds the exception instance passed to set_exception()
if set_exception() was called. Otherwise None

	
value

	Holds the value passed to set() if set() was
called. Otherwise None

	
rawlink(callback)[source]

	Register a callback to call when a value or an exception is
set

	Parameters:	callback (func) – A callback function to call after set() or
set_exception() has been called. This function will
be passed a single argument, this instance.

	
ready()[source]

	Return True if and only if it holds a value or an
exception

	
unlink(callback)[source]

	Remove the callback set by rawlink()

	Parameters:	callback (func) – A callback function to remove.

	
wait(timeout=None)[source]

	Block until the instance is ready.

	Parameters:	timeout (float) – How long to wait for a value when block is
True.

If this instance already holds a value / an exception, return /
raise it immediately. Otherwise, block until set() or
set_exception() has been called or until the optional
timeout occurs.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.protocol.states

Kazoo State and Event objects

Public API

	
class kazoo.protocol.states.EventType[source]

	Zookeeper Event

Represents a Zookeeper event. Events trigger watch functions which
will receive a EventType attribute as their event
argument.

	
CREATED

	A node has been created.

	
DELETED

	A node has been deleted.

	
CHANGED

	The data for a node has changed.

	
CHILD

	The children under a node have changed (a child was added or
removed). This event does not indicate the data for a child
node has changed, which must have its own watch established.

	
class kazoo.protocol.states.KazooState[source]

	High level connection state values

States inspired by Netflix Curator.

	
SUSPENDED

	The connection has been lost but may be recovered. We should
operate in a “safe mode” until then. When the connection is
resumed, it may be discovered that the session expired. A
client should not assume that locks are valid during this
time.

	
CONNECTED

	The connection is alive and well.

	
LOST

	The connection has been confirmed dead. Any ephemeral nodes
will need to be recreated upon re-establishing a connection.
If locks were acquired or recipes using ephemeral nodes are in
use, they can be considered lost as well.

	
class kazoo.protocol.states.KeeperState[source]

	Zookeeper State

Represents the Zookeeper state. Watch functions will receive a
KeeperState attribute as their state argument.

	
AUTH_FAILED

	Authentication has failed, this is an unrecoverable error.

	
CONNECTED

	Zookeeper is connected.

	
CONNECTED_RO

	Zookeeper is connected in read-only state.

	
CONNECTING

	Zookeeper is currently attempting to establish a connection.

	
EXPIRED_SESSION

	The prior session was invalid, all prior ephemeral nodes are
gone.

	
class kazoo.protocol.states.WatchedEvent[source]

	A change on ZooKeeper that a Watcher is able to respond to.

The WatchedEvent includes exactly what happened, the
current state of ZooKeeper, and the path of the node that was
involved in the event. An instance of WatchedEvent will be
passed to registered watch functions.

	
type

	A EventType attribute indicating the event type.

	
state

	A KeeperState attribute indicating the Zookeeper
state.

	
path

	The path of the node for the watch event.

	
class kazoo.protocol.states.ZnodeStat[source]

	A ZnodeStat structure with convenience properties

When getting the value of a node from Zookeeper, the properties for
the node known as a “Stat structure” will be retrieved. The
ZnodeStat object provides access to the standard Stat
properties and additional properties that are more readable and use
Python time semantics (seconds since epoch instead of ms).

Note

The original Zookeeper Stat name is in parens next to the name
when it differs from the convenience attribute. These are not
functions, just attributes.

	
creation_transaction_id(czxid)[source]

	The transaction id of the change that caused this znode to be
created.

	
last_modified_transaction_id(mzxid)[source]

	The transaction id of the change that last modified this znode.

	
created(ctime)[source]

	The time in seconds from epoch when this node was created.
(ctime is in milliseconds)

	
last_modified(mtime)[source]

	The time in seconds from epoch when this znode was last
modified. (mtime is in milliseconds)

	
version

	The number of changes to the data of this znode.

	
acl_version(aversion)[source]

	The number of changes to the ACL of this znode.

	
owner_session_id(ephemeralOwner)[source]

	The session id of the owner of this znode if the znode is an
ephemeral node. If it is not an ephemeral node, it will be
None. (ephemeralOwner will be 0 if it is not ephemeral)

	
data_length(dataLength)[source]

	The length of the data field of this znode.

	
children_count(numChildren)[source]

	The number of children of this znode.

Private API

	
class kazoo.protocol.states.Callback[source]

	A callback that is handed to a handler for dispatch

	Parameters:	
	type – Type of the callback, currently is only ‘watch’

	func – Callback function

	args – Argument list for the callback function

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.barrier

Zookeeper Barriers

Public API

	
class kazoo.recipe.barrier.Barrier(client, path)[source]

	Kazoo Barrier

Implements a barrier to block processing of a set of nodes until
a condition is met at which point the nodes will be allowed to
proceed. The barrier is in place if its node exists.

Warning

The wait() function does not handle connection loss and
may raise ConnectionLossException if
the connection is lost while waiting.

	
__init__(client, path)[source]

	Create a Kazoo Barrier

	Parameters:	
	client – A KazooClient instance.

	path – The barrier path to use.

	
create()[source]

	Establish the barrier if it doesn’t exist already

	
remove()[source]

	Remove the barrier

	Returns:	Whether the barrier actually needed to be removed.

	Return type:	bool

	
wait(timeout=None)[source]

	Wait on the barrier to be cleared

	Returns:	True if the barrier has been cleared, otherwise
False.

	Return type:	bool

	
class kazoo.recipe.barrier.DoubleBarrier(client, path, num_clients, identifier=None)[source]

	Kazoo Double Barrier

Double barriers are used to synchronize the beginning and end of
a distributed task. The barrier blocks when entering it until all
the members have joined, and blocks when leaving until all the
members have left.

Note

You should register a listener for session loss as the process
will no longer be part of the barrier once the session is
gone. Connection losses will be retried with the default retry
policy.

	
__init__(client, path, num_clients, identifier=None)[source]

	Create a Double Barrier

	Parameters:	
	client – A KazooClient instance.

	path – The barrier path to use.

	num_clients (int) – How many clients must enter the barrier to
proceed.

	identifier – An identifier to use for this member of the
barrier when participating. Defaults to the
hostname + process id.

	
enter()[source]

	Enter the barrier, blocks until all nodes have entered

	
leave()[source]

	Leave the barrier, blocks until all nodes have left

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.counter

Zookeeper Counter

New in version 0.7: The Counter class.

Public API

	
class kazoo.recipe.counter.Counter(client, path, default=0)[source]

	Kazoo Counter

A shared counter of either int or float values. Changes to the
counter are done atomically. The general retry policy is used to
retry operations if concurrent changes are detected.

The data is marshaled using repr(value) and converted back using
type(counter.default)(value) both using an ascii encoding. As
such other data types might be used for the counter value.

Counter changes can raise
BadVersionError if the retry policy
wasn’t able to apply a change.

Example usage:

zk = KazooClient()
counter = zk.Counter("/int")
counter += 2
counter -= 1
counter.value == 1

counter = zk.Counter("/float", default=1.0)
counter += 2.0
counter.value == 3.0

	
__init__(client, path, default=0)[source]

	Create a Kazoo Counter

	Parameters:	
	client – A KazooClient instance.

	path – The counter path to use.

	default – The default value.

	
__add__(value)[source]

	Add value to counter.

	
__sub__(value)[source]

	Subtract value from counter.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.election

ZooKeeper Leader Elections

Public API

	
class kazoo.recipe.election.Election(client, path, identifier=None)[source]

	Kazoo Basic Leader Election

Example usage with a KazooClient instance:

zk = KazooClient()
election = zk.Election("/electionpath", "my-identifier")

blocks until the election is won, then calls
my_leader_function()
election.run(my_leader_function)

	
__init__(client, path, identifier=None)[source]

	Create a Kazoo Leader Election

	Parameters:	
	client – A KazooClient instance.

	path – The election path to use.

	identifier – Name to use for this lock contender. This
can be useful for querying to see who the
current lock contenders are.

	
cancel()[source]

	Cancel participation in the election

Note

If this contender has already been elected leader, this
method will not interrupt the leadership function.

	
contenders()[source]

	Return an ordered list of the current contenders in the
election

Note

If the contenders did not set an identifier, it will appear
as a blank string.

	
run(func, *args, **kwargs)[source]

	Contend for the leadership

This call will block until either this contender is cancelled
or this contender wins the election and the provided leadership
function subsequently returns or fails.

	Parameters:	
	func – A function to be called if/when the election is
won.

	args – Arguments to leadership function.

	kwargs – Keyword arguments to leadership function.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.lock

Zookeeper Locking Implementations

Error Handling

It’s highly recommended to add a state listener with
add_listener() and watch for
LOST and SUSPENDED state
changes and re-act appropriately. In the event that a
LOST state occurs, its certain that the lock
and/or the lease has been lost.

Public API

	
class kazoo.recipe.lock.Lock(client, path, identifier=None)[source]

	Kazoo Lock

Example usage with a KazooClient instance:

zk = KazooClient()
lock = zk.Lock("/lockpath", "my-identifier")
with lock: # blocks waiting for lock acquisition
 # do something with the lock

	
__init__(client, path, identifier=None)[source]

	Create a Kazoo lock.

	Parameters:	
	client – A KazooClient instance.

	path – The lock path to use.

	identifier – Name to use for this lock contender. This
can be useful for querying to see who the
current lock contenders are.

	
acquire(blocking=True, timeout=None)[source]

	Acquire the lock. By defaults blocks and waits forever.

	Parameters:	
	blocking (bool) – Block until lock is obtained or return immediately.

	timeout (float or None) – Don’t wait forever to acquire the lock.

	Returns:	Was the lock acquired?

	Return type:	bool

	Raises :	LockTimeout if the lock
wasn’t acquired within timeout seconds.

New in version 1.1: The timeout option.

	
cancel()[source]

	Cancel a pending lock acquire.

	
contenders()[source]

	Return an ordered list of the current contenders for the
lock.

Note

If the contenders did not set an identifier, it will appear
as a blank string.

	
release()[source]

	Release the lock immediately.

	
class kazoo.recipe.lock.Semaphore(client, path, identifier=None, max_leases=1)[source]

	A Zookeeper-based Semaphore

This synchronization primitive operates in the same manner as the
Python threading version only uses the concept of leases to
indicate how many available leases are available for the lock
rather than counting.

Example:

zk = KazooClient()
semaphore = zk.Semaphore("/leasepath", "my-identifier")
with semaphore: # blocks waiting for lock acquisition
 # do something with the semaphore

Warning

This class stores the allowed max_leases as the data on the
top-level semaphore node. The stored value is checked once
against the max_leases of each instance. This check is
performed when acquire is called the first time. The semaphore
node needs to be deleted to change the allowed leases.

New in version 0.6: The Semaphore class.

New in version 1.1: The max_leases check.

	
__init__(client, path, identifier=None, max_leases=1)[source]

	Create a Kazoo Lock

	Parameters:	
	client – A KazooClient instance.

	path – The semaphore path to use.

	identifier – Name to use for this lock contender. This
can be useful for querying to see who the
current lock contenders are.

	max_leases – The maximum amount of leases available for
the semaphore.

	
acquire(blocking=True, timeout=None)[source]

	Acquire the semaphore. By defaults blocks and waits forever.

	Parameters:	
	blocking (bool) – Block until semaphore is obtained or
return immediately.

	timeout (float or None) – Don’t wait forever to acquire the semaphore.

	Returns:	Was the semaphore acquired?

	Return type:	bool

	Raises :	ValueError if the max_leases value doesn’t match the
stored value.

LockTimeout if the semaphore
wasn’t acquired within timeout seconds.

New in version 1.1: The blocking, timeout arguments and the max_leases check.

	
cancel()[source]

	Cancel a pending semaphore acquire.

	
lease_holders()[source]

	Return an unordered list of the current lease holders.

Note

If the lease holder did not set an identifier, it will
appear as a blank string.

	
release()[source]

	Release the lease immediately.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.partitioner

Zookeeper Partitioner Implementation

SetPartitioner implements a partitioning scheme using
Zookeeper for dividing up resources amongst members of a party.

This is useful when there is a set of resources that should only be
accessed by a single process at a time that multiple processes
across a cluster might want to divide up.

Example Use-Case

	Multiple workers across a cluster need to divide up a list of queues
so that no two workers own the same queue.

Public API

	
class kazoo.recipe.partitioner.SetPartitioner(client, path, set, partition_func=None, identifier=None, time_boundary=30)[source]

	Partitions a set amongst members of a party

This class will partition a set amongst members of a party such
that each member will be given zero or more items of the set and
each set item will be given to a single member. When new members
enter or leave the party, the set will be re-partitioned amongst
the members.

When the SetPartitioner enters the
FAILURE state, it is unrecoverable
and a new SetPartitioner should be created.

Example:

from kazoo.client import KazooClient
client = KazooClient()

qp = client.SetPartitioner(
 path='/work_queues', set=('queue-1', 'queue-2', 'queue-3'))

while 1:
 if qp.failed:
 raise Exception("Lost or unable to acquire partition")
 elif qp.release:
 qp.release_set()
 elif qp.acquired:
 for partition in qp:
 # Do something with each partition
 elif qp.allocating:
 qp.wait_for_acquire()

State Transitions

When created, the SetPartitioner enters the
PartitionState.ALLOCATING state.

ALLOCATING ->
ACQUIRED

Set was partitioned successfully, the partition list assigned
is accessible via list/iter methods or calling list() on the
SetPartitioner instance.

ALLOCATING ->
FAILURE

Allocating the set failed either due to a Zookeeper session
expiration, or failure to acquire the items of the set within
the timeout period.

ACQUIRED ->
RELEASE

The members of the party have changed, and the set needs to be
repartitioned. SetPartitioner.release() should be called
as soon as possible.

ACQUIRED ->
FAILURE

The current partition was lost due to a Zookeeper session
expiration.

RELEASE ->
ALLOCATING

The current partition was released and is being re-allocated.

	
__init__(client, path, set, partition_func=None, identifier=None, time_boundary=30)[source]

	Create a SetPartitioner instance

	Parameters:	
	client – A KazooClient instance.

	path – The partition path to use.

	set – The set of items to partition.

	partition_func – A function to use to decide how to
partition the set.

	identifier – An identifier to use for this member of the
party when participating. Defaults to the
hostname + process id.

	time_boundary – How long the party members must be stable
before allocation can complete.

	
acquired[source]

	Corresponds to the PartitionState.ACQUIRED state

	
allocating[source]

	Corresponds to the PartitionState.ALLOCATING
state

	
failed[source]

	Corresponds to the PartitionState.FAILURE state

	
finish()[source]

	Call to release the set and leave the party

	
release[source]

	Corresponds to the PartitionState.RELEASE state

	
release_set()[source]

	Call to release the set

This method begins the step of allocating once the set has
been released.

	
wait_for_acquire(timeout=30)[source]

	Wait for the set to be partitioned and acquired

	Parameters:	timeout (int) – How long to wait before returning.

	
class kazoo.recipe.partitioner.PartitionState[source]

	High level partition state values

	
ALLOCATING

	The set needs to be partitioned, and may require an existing
partition set to be released before acquiring a new partition
of the set.

	
ACQUIRED

	The set has been partitioned and acquired.

	
RELEASE

	The set needs to be repartitioned, and the current partitions
must be released before a new allocation can be made.

	
FAILURE

	The set partition has failed. This occurs when the maximum
time to partition the set is exceeded or the Zookeeper session
is lost. The partitioner is unusable after this state and must
be recreated.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.party

Party

A Zookeeper pool of party members. The Party object can be
used for determining members of a party.

Public API

	
class kazoo.recipe.party.Party(client, path, identifier=None)[source]

	Simple pool of participating processes

	
__init__(client, path, identifier=None)[source]

	

	
__iter__()[source]

	Get a list of participating clients’ data values

	
__len__()

	Return a count of participating clients

	
join()

	Join the party

	
leave()

	Leave the party

	
class kazoo.recipe.party.ShallowParty(client, path, identifier=None)[source]

	Simple shallow pool of participating processes

This differs from the Party as the identifier is used in
the name of the party node itself, rather than the data. This
places some restrictions on the length as it must be a valid
Zookeeper node (an alphanumeric string), but reduces the overhead
of getting a list of participants to a single Zookeeper call.

	
__init__(client, path, identifier=None)[source]

	

	
__iter__()[source]

	Get a list of participating clients’ identifiers

	
__len__()

	Return a count of participating clients

	
join()

	Join the party

	
leave()

	Leave the party

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.queue

Zookeeper based queue implementations.

New in version 0.6: The Queue class.

New in version 1.0: The LockingQueue class.

Public API

	
class kazoo.recipe.queue.Queue(client, path)[source]

	A distributed queue with optional priority support.

This queue does not offer reliable consumption. An entry is removed
from the queue prior to being processed. So if an error occurs, the
consumer has to re-queue the item or it will be lost.

	
__init__(client, path)

	

	Parameters:	
	client – A KazooClient instance.

	path – The queue path to use in ZooKeeper.

	
__len__()[source]

	Return queue size.

	
get()[source]

	Get item data and remove an item from the queue.

	Returns:	Item data or None.

	Return type:	bytes

	
put(value, priority=100)[source]

	Put an item into the queue.

	Parameters:	
	value – Byte string to put into the queue.

	priority – An optional priority as an integer with at most 3 digits.
Lower values signify higher priority.

	
class kazoo.recipe.queue.LockingQueue(client, path)[source]

	A distributed queue with priority and locking support.

Upon retrieving an entry from the queue, the entry gets locked with an
ephemeral node (instead of deleted). If an error occurs, this lock gets
released so that others could retake the entry. This adds a little penalty
as compared to Queue implementation.

The user should call the LockingQueue.get() method first to lock and
retrieve the next entry. When finished processing the entry, a user should
call the LockingQueue.consume() method that will remove the entry
from the queue.

This queue will not track connection status with ZooKeeper. If a node locks
an element, then loses connection with ZooKeeper and later reconnects, the
lock will probably be removed by Zookeeper in the meantime, but a node
would still think that it holds a lock. The user should check the
connection status with Zookeeper or call LockingQueue.holds_lock()
method that will check if a node still holds the lock.

Note

LockingQueue requires ZooKeeper 3.4 or above, since it is
using transactions.

	
__init__(client, path)[source]

	

	Parameters:	
	client – A KazooClient instance.

	path – The queue path to use in ZooKeeper.

	
__len__()[source]

	Returns the current length of the queue.

	Returns:	queue size (includes locked entries count).

	
consume()[source]

	Removes a currently processing entry from the queue.

	Returns:	True if element was removed successfully, False otherwise.

	Return type:	bool

	
get(timeout=None)[source]

	Locks and gets an entry from the queue. If a previously got entry
was not consumed, this method will return that entry.

	Parameters:	timeout – Maximum waiting time in seconds. If None then it will wait
untill an entry appears in the queue.

	Returns:	A locked entry value or None if the timeout was reached.

	Return type:	bytes

	
holds_lock()[source]

	Checks if a node still holds the lock.

	Returns:	True if a node still holds the lock, False otherwise.

	Return type:	bool

	
put(value, priority=100)[source]

	Put an entry into the queue.

	Parameters:	
	value – Byte string to put into the queue.

	priority – An optional priority as an integer with at most 3 digits.
Lower values signify higher priority.

	
put_all(values, priority=100)[source]

	Put several entries into the queue. The action only succeeds
if all entries where put into the queue.

	Parameters:	
	values – A list of values to put into the queue.

	priority – An optional priority as an integer with at most 3 digits.
Lower values signify higher priority.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.recipe.watchers

Higher level child and data watching API’s.

Public API

	
class kazoo.recipe.watchers.DataWatch(client, path, func=None, *args, **kwargs)[source]

	Watches a node for data updates and calls the specified
function each time it changes

The function will also be called the very first time its
registered to get the data.

Returning False from the registered function will disable future
data change calls. If the client connection is closed (using the
close command), the DataWatch will no longer get updates.

If the function supplied takes three arguments, then the third one
will be a WatchedEvent. It will
only be set if the change to the data occurs as a result of the
server notifying the watch that there has been a change. Events
like reconnection or the first call will not include an event.

If the node does not exist, then the function will be called with
None for all values.

Example with client:

@client.DataWatch('/path/to/watch')
def my_func(data, stat):
 print("Data is %s" % data)
 print("Version is %s" % stat.version)

Above function is called immediately and prints

Or if you want the event object
@client.DataWatch('/path/to/watch')
def my_func(data, stat, event):
 print("Data is %s" % data)
 print("Version is %s" % stat.version)
 print("Event is %s" % event)

Changed in version 1.2.

	
__init__(client, path, func=None, *args, **kwargs)[source]

	Create a data watcher for a path

	Parameters:	
	client (KazooClient) – A zookeeper client.

	path (str) – The path to watch for data changes on.

	func (callable) – Function to call initially and every time the
node changes. func will be called with a
tuple, the value of the node and a
ZnodeStat instance.

	
__call__(func)[source]

	Callable version for use as a decorator

	Parameters:	func (callable) – Function to call initially and every time the
data changes. func will be called with a
tuple, the value of the node and a
ZnodeStat instance.

	
class kazoo.recipe.watchers.ChildrenWatch(client, path, func=None, allow_session_lost=True, send_event=False)[source]

	Watches a node for children updates and calls the specified
function each time it changes

The function will also be called the very first time its
registered to get children.

Returning False from the registered function will disable future
children change calls. If the client connection is closed (using
the close command), the ChildrenWatch will no longer get updates.

if send_event=True in __init__, then the function will always be
called with second parameter, event. Upon initial call or when
recovering a lost session the event is always None.
Otherwise it’s a WatchedEvent
instance.

Example with client:

@client.ChildrenWatch('/path/to/watch')
def my_func(children):
 print "Children are %s" % children

Above function is called immediately and prints children

	
__init__(client, path, func=None, allow_session_lost=True, send_event=False)[source]

	Create a children watcher for a path

	Parameters:	
	client (KazooClient) – A zookeeper client.

	path (str) – The path to watch for children on.

	func (callable) – Function to call initially and every time the
children change. func will be called with a
single argument, the list of children.

	allow_session_lost (bool) – Whether the watch should be
re-registered if the zookeeper
session is lost.

	send_event (bool) – Whether the function should be passed the
event sent by ZooKeeper or None upon
initialization (see class documentation)

The path must already exist for the children watcher to
run.

	
__call__(func)[source]

	Callable version for use as a decorator

	Parameters:	func (callable) – Function to call initially and every time the
children change. func will be called with a
single argument, the list of children.

	
class kazoo.recipe.watchers.PatientChildrenWatch(client, path, time_boundary=30)[source]

	Patient Children Watch that returns values after the children
of a node don’t change for a period of time

A separate watcher for the children of a node, that ignores
changes within a boundary time and sets the result only when the
boundary time has elapsed with no children changes.

Example:

watcher = PatientChildrenWatch(client, '/some/path',
 time_boundary=5)
async_object = watcher.start()

Blocks until the children have not changed for time boundary
(5 in this case) seconds, returns children list and an
async_result that will be set if the children change in the
future
children, child_async = async_object.get()

Note

This Watch is different from DataWatch and
ChildrenWatch as it only returns once, does not take
a function that is called, and provides an
IAsyncResult object that can be
checked to see if the children have changed later.

	
__init__(client, path, time_boundary=30)[source]

	

	
start()[source]

	Begin the watching process asynchronously

	Returns:	An IAsyncResult instance
that will be set when no change has occurred to the
children for time boundary seconds.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.retry

Public API

	
class kazoo.retry.KazooRetry(max_tries=1, delay=0.1, backoff=2, max_jitter=0.8, max_delay=3600, ignore_expire=True, sleep_func=<built-in function sleep>, deadline=None, interrupt=None)[source]

	Helper for retrying a method in the face of retry-able
exceptions

	
__init__(max_tries=1, delay=0.1, backoff=2, max_jitter=0.8, max_delay=3600, ignore_expire=True, sleep_func=<built-in function sleep>, deadline=None, interrupt=None)[source]

	Create a KazooRetry instance for retrying function
calls

	Parameters:	
	max_tries – How many times to retry the command.

	delay – Initial delay between retry attempts.

	backoff – Backoff multiplier between retry attempts.
Defaults to 2 for exponential backoff.

	max_jitter – Additional max jitter period to wait between
retry attempts to avoid slamming the server.

	max_delay – Maximum delay in seconds, regardless of other
backoff settings. Defaults to one hour.

	ignore_expire – Whether a session expiration should be ignored and treated
as a retry-able command.

	interrupt – Function that will be called with no args that may return
True if the retry should be ceased immediately. This will
be called no more than every 0.1 seconds during a wait
between retries.

	
__call__(func, *args, **kwargs)[source]

	Call a function with arguments until it completes without
throwing a Kazoo exception

	Parameters:	
	func – Function to call

	args – Positional arguments to call the function with

	Params kwargs:	Keyword arguments to call the function with

The function will be called until it doesn’t throw one of the
retryable exceptions (ConnectionLoss, OperationTimeout, or
ForceRetryError), and optionally retrying on session
expiration.

	
reset()[source]

	Reset the attempt counter

	
copy()[source]

	Return a clone of this retry manager

	
exception kazoo.retry.ForceRetryError[source]

	Raised when some recipe logic wants to force a retry.

	
exception kazoo.retry.RetryFailedError[source]

	Raised when retrying an operation ultimately failed, after
retrying the maximum number of attempts.

	
exception kazoo.retry.InterruptedError[source]

	Raised when the retry is forcibly interrupted by the interrupt
function

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.security

Kazoo Security

Public API

	
class kazoo.security.ACL[source]

	An ACL for a Zookeeper Node

An ACL object is created by using an Id object along with
a Permissions setting. For convenience,
make_digest_acl() should be used to create an ACL object with
the desired scheme, id, and permissions.

	
class kazoo.security.Id

	Id(scheme, id)

	
kazoo.security.make_digest_acl(username, password, read=False, write=False, create=False, delete=False, admin=False, all=False)[source]

	Create a digest ACL for Zookeeper with the given permissions

This method combines make_digest_acl_credential() and
make_acl() to create an ACL object appropriate for
use with Kazoo’s ACL methods.

	Parameters:	
	username – Username to use for the ACL.

	password – A plain-text password to hash.

	write (bool) – Write permission.

	create (bool) – Create permission.

	delete (bool) – Delete permission.

	admin (bool) – Admin permission.

	all (bool) – All permissions.

	Return type:	ACL

Private API

	
kazoo.security.make_acl(scheme, credential, read=False, write=False, create=False, delete=False, admin=False, all=False)[source]

	Given a scheme and credential, return an ACL object
appropriate for use with Kazoo.

	Parameters:	
	scheme – The scheme to use. I.e. digest.

	credential – A colon separated username, password. The password should be
hashed with the scheme specified. The
make_digest_acl_credential() method will create and
return a credential appropriate for use with the digest
scheme.

	write (bool) – Write permission.

	create (bool) – Create permission.

	delete (bool) – Delete permission.

	admin (bool) – Admin permission.

	all (bool) – All permissions.

	Return type:	ACL

	
kazoo.security.make_digest_acl_credential(username, password)[source]

	Create a SHA1 digest credential

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

 	API Documentation

kazoo.testing.harness

Kazoo testing harnesses

Public API

	
class kazoo.testing.harness.KazooTestHarness(*args, **kw)[source]

	Harness for testing code that uses Kazoo

This object can be used directly or as a mixin. It supports starting
and stopping a complete ZooKeeper cluster locally and provides an
API for simulating errors and expiring sessions.

Example:

class MyTestCase(KazooTestHarness):
 def setUp(self):
 self.setup_zookeeper()

 # additional test setup

 def tearDown(self):
 self.teardown_zookeeper()

 def test_something(self):
 something_that_needs_a_kazoo_client(self.client)

 def test_something_else(self):
 something_that_needs_zk_servers(self.servers)

	
class kazoo.testing.harness.KazooTestCase(*args, **kw)[source]

	

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kazoo 1.3.1 documentation

Changelog

1.3.1 (2013-09-25)

Bug Handling

	#118, #125, #128: Fix unknown variable in KazooClient command_retry
argument handling.

	#126: Fix KazooRetry.copy to correctly copy sleep function.

	#118: Correct session/socket timeout conversion (int vs. float).

Documentation

	#121: Add a note about kazoo.recipe.queue.LockingQueue requiring a
Zookeeper 3.4+ server.

1.3 (2013-09-05)

Features

	#115: Limit the backends we use for SLF4J during tests.

	#112: Add IPv6 support. Patch by Dan Kruchinin.

1.2.1 (2013-08-01)

Bug Handling

	Issue #108: Circular import fail when importing kazoo.recipe.watchers
directly has now been resolved. Watchers and partitioner properly import
the KazooState from kazoo.protocol.states rather than kazoo.client.

	Issue #109: Partials not usable properly as a datawatch call can now be
used. All funcs will be called with 3 args and fall back to 2 args if
there’s an argument error.

	Issue #106, #107: client.create_async didn’t strip change root from the
returned path.

1.2 (2013-07-24)

Features

	KazooClient can now be stopped more reliably even if its in the middle
of a long retry sleep. This utilizes the new interrupt feature of
KazooRetry which lets the sleep be broken down into chunks and an
interrupt function called to determine if the retry should fail early.

	Issue #62, #92, #89, #101, #102: Allow KazooRetry to have a
max deadline, transition properly when connection fails to LOST, and
setup separate connection retry behavior from client command retry
behavior. Patches by Mike Lundy.

	Issue #100: Make it easier to see exception context in threading and
connection modules.

	Issue #85: Increase information density of logs and don’t prevent
dynamic reconfiguration of log levels at runtime.

	Data-watchers for the same node are no longer ‘stacked’. That is, if
a get and an exists call occur for the same node with the same watch
function, then it will be registered only once. This change results in
Kazoo behaving per Zookeeper client spec regarding repeat watch use.

Bug Handling

	Issue #53: Throw a warning upon starting if the chroot path doesn’t exist
so that it’s more obvious when the chroot should be created before
performing more operations.

	Kazoo previously would let the same function be registered as a data-watch
or child-watch multiple times, and then call it multiple times upon being
triggered. This was non-compliant Zookeeper client behavior, the same
watch can now only be registered once for the same znode path per Zookeeper
client documentation.

	Issue #105: Avoid rare import lock problems by moving module imports in
client.py to the module scope.

	Issue #103: Allow prefix-less sequential znodes.

	Issue #98: Extend testing ZK harness to work with different file locations
on some versions of Debian/Ubuntu.

	Issue #97: Update some docstrings to reflect current state of handlers.

	Issue #62, #92, #89, #101, #102: Allow KazooRetry to have a
max deadline, transition properly when connection fails to LOST, and
setup separate connection retry behavior from client command retry
behavior. Patches by Mike Lundy.

API Changes

	The kazoo.testing.harness.KazooTestHarness class directly inherits from
unittest.TestCase and you need to ensure to call its __init__ method.

	DataWatch no longer takes any parameters besides for the optional function
during instantiation. The additional options are now implicitly True, with
the user being left to ignore events as they choose. See the DataWatch
API docs for more information.

	Issue #99: Better exception raised when the writer fails to close. A
WriterNotClosedException that inherits from KazooException is now raised
when the writer fails to close in time.

1.1 (2013-06-08)

Features

	Issue #93: Add timeout option to lock/semaphore acquire methods.

	Issue #79 / #90: Add ability to pass the WatchedEvent to DataWatch and
ChildWatch functions.

	Respect large client timeout values when closing the connection.

	Add a max_leases consistency check to the semaphore recipe.

	Issue #76: Extend testing helpers to allow customization of the Java
classpath by specifying the new ZOOKEEPER_CLASSPATH environment variable.

	Issue #65: Allow non-blocking semaphore acquisition.

Bug Handling

	Issue #96: Provide Windows compatibility in testing harness.

	Issue #95: Handle errors deserializing connection response.

	Issue #94: Clean up stray bytes in connection pipe.

	Issue #87 / #88: Allow re-acquiring lock after cancel.

	Issue #77: Use timeout in initial socket connection.

	Issue #69: Only ensure path once in lock and semaphore recipes.

	Issue #68: Closing the connection causes exceptions to be raised by watchers
which assume the connection won’t be closed when running commands.

	Issue #66: Require ping reply before sending another ping, otherwise the
connection will be considered dead and a ConnectionDropped will be raised
to trigger a reconnect.

	Issue #63: Watchers weren’t reset on lost connection.

	Issue #58: DataWatcher failed to re-register for changes after non-existent
node was created then deleted.

API Changes

	KazooClient.create_async now supports the makepath argument.

	KazooClient.ensure_path now has an async version, ensure_path_async.

1.0 (2013-03-26)

Features

	Added a LockingQueue recipe. The queue first locks an item and removes it
from the queue only after the consume() method is called. This enables other
nodes to retake the item if an error occurs on the first node.

Bug Handling

	Issue #50: Avoid problems with sleep function in mixed gevent/threading
setup.

	Issue #56: Avoid issues with watch callbacks evaluating to false.

1.0b1 (2013-02-24)

Features

	Refactored the internal connection handler to use a single thread. It now
uses a deque and pipe to signal the ZK thread that there’s a new command to
send, so that the ZK thread can send it, or retrieve a response.
Processing ZK requests and responses serially in a single thread eliminates
the need for a bunch of the locking, the peekable queue and two threads
working on the same underlying socket.

	Issue #48: Added documentation for the retry helper module.

	Issue #55: Fix os.pipe file descriptor leak and introduce a
KazooClient.close method. The method is particular useful in tests, where
multiple KazooClients are created and closed in the same process.

Bug Handling

	Issue #46: Avoid TypeError in GeneratorContextManager on process shutdown.

	Issue #43: Let DataWatch return node data if allow_missing_node is used.

0.9 (2013-01-07)

API Changes

	When a retry operation ultimately fails, it now raises a
kazoo.retry.RetryFailedError exception, instead of a general Exception
instance. RetryFailedError also inherits from the base KazooException.

Features

	Improvements to Debian packaging rules.

Bug Handling

	Issue #39 / #41: Handle connection dropped errors during session writes.
Ensure client connection is re-established to a new ZK node if available.

	Issue #38: Set CLOEXEC flag on all sockets when available.

	Issue #37 / #40: Handle timeout errors during select calls on sockets.

	Issue #36: Correctly set ConnectionHandler.writer_stopped even if an
exception is raised inside the writer, like a retry operation failing.

0.8 (2012-10-26)

API Changes

	The KazooClient.__init__ took as watcher argument as its second keyword
argument. The argument had no effect anymore since version 0.5 and was
removed.

Bug Handling

	Issue #35: KazooClient.__init__ didn’t pass on retry_max_delay to the
retry helper.

	Issue #34: Be more careful while handling socket connection errors.

0.7 (2012-10-15)

Features

	DataWatch now has a allow_missing_node setting that allows a watch to be
set on a node that doesn’t exist when the DataWatch is created.

	Add new Queue recipe, with optional priority support.

	Add new Counter recipe.

	Added debian packaging rules.

Bug Handling

	Issue #31 fixed: Only catch KazooExceptions in catch-all calls.

	Issue #15 fixed again: Force sleep delay to be a float to appease gevent.

	Issue #29 fixed: DataWatch and ChildrenWatch properly re-register their
watches on server disconnect.

0.6 (2012-09-27)

API Changes

	Node paths are assumed to be Unicode objects. Under Python 2 pure-ascii
strings will also be accepted. Node values are considered bytes. The byte
type is an alias for str under Python 2.

	New KeeperState.CONNECTED_RO state for Zookeeper servers connected in
read-only mode.

	New NotReadOnlyCallError exception when issuing a write change against a
server thats currently read-only.

Features

	Add support for Python 3.2, 3.3 and PyPy (only for the threading handler).

	Handles connecting to Zookeeper 3.4+ read-only servers.

	Automatic background scanning for a Read/Write server when connected to a
server in read-only mode.

	Add new Semaphore recipe.

	Add a new retry_max_delay argument to the client and by default limit the
retry delay to at most an hour regardless of exponential backoff settings.

	Add new randomize_hosts argument to KazooClient, allowing one to disable
host randomization.

Bug Handling

	Fix bug with locks not handling intermediary lock contenders disappearing.

	Fix bug with set_data type check failing to catch unicode values.

	Fix bug with gevent 0.13.x backport of peekable queue.

	Fix PatientChildrenWatch to use handler specific sleep function.

0.5 (2012-09-06)

Skipping a version to reflect the magnitude of the change. Kazoo is now a pure
Python client with no C bindings. This release should run without a problem
on alternate Python implementations such as PyPy and Jython. Porting to Python
3 in the future should also be much easier.

Documentation

	Docs have been restructured to handle the new classes and locations of the
methods from the pure Python refactor.

Bug Handling

This change may introduce new bugs, however there is no longer the possibility
of a complete Python segfault due to errors in the C library and/or the C
binding.

	Possible segfaults from the C lib are gone.

	Password mangling due to the C lib is gone.

	The party recipes didn’t set their participating flag to False after
leaving.

Features

	New client.command and client.server_version API, exposing Zookeeper’s
four letter commands and giving access to structured version information.

	Added ‘include_data’ option for get_children to include the node’s Stat
object.

	Substantial increase in logging data with debug mode. All correspondence with
the Zookeeper server can now be seen to help in debugging.

API Changes

	The testing helpers have been moved from testing.__init__ into a
testing.harness module. The official API’s of KazooTestCase and
KazooTestHarness can still be directly imported from testing.

	The kazoo.handlers.util module was removed.

	Backwards compatible exception class aliases are provided for now in kazoo
exceptions for the prior C exception names.

	Unicode strings now work fine for node names and are properly converted to
and from unicode objects.

	The data value argument for the create and create_async methods of the
client was made optional and defaults to an empty byte string. The data
value must be a byte string. Unicode values are no longer allowed and
will raise a TypeError.

0.3 (2012-08-23)

API Changes

	Handler interface now has an rlock_object for use by recipes.

Bug Handling

	Fixed password bug with updated zc-zookeeper-static release, which retains
null bytes in the password properly.

	Fixed reconnect hammering, so that the reconnection follows retry jitter and
retry backoff’s.

	Fixed possible bug with using a threading.Condition in the set partitioner.
Set partitioner uses new rlock_object handler API to get an appropriate RLock
for gevent.

	Issue #17 fixed: Wrap timeout exceptions with staticmethod so they can be
used directly as intended. Patch by Bob Van Zant.

	Fixed bug with client reconnection looping indefinitely using an expired
session id.

0.2 (2012-08-12)

Documentation

	Fixed doc references to start_async using an AsyncResult object, it uses
an Event object.

Bug Handling

	Issue #16 fixed: gevent zookeeper logging failed to handle a monkey patched
logging setup. Logging is now setup such that a greenlet is used for logging
messages under gevent, and the thread one is used otherwise.

	Fixed bug similar to #14 for ChildrenWatch on the session listener.

	Issue #14 fixed: DataWatch had inconsistent handling of the node it was
watching not existing. DataWatch also properly spawns its _get_data function
to avoid blocking session events.

	Issue #15 fixed: sleep_func for SequentialGeventHandler was not set on the
class appropriately leading to additional arguments being passed to
gevent.sleep.

	Issue #9 fixed: Threads/greenlets didn’t gracefully shut down. Handler now
has a start/stop that is used by the client when calling start and stop that
shuts down the handler workers. This addresses errors and warnings that could
be emitted upon process shutdown regarding a clean exit of the workers.

	Issue #12 fixed: gevent 0.13 doesn’t use the same start_new_thread as gevent
1.0 which resulted in a fully monkey-patched environment halting due to the
wrong thread. Updated to use the older kazoo method of getting the real thread
module object.

API Changes

	The KazooClient handler is now officially exposed as KazooClient.handler
so that the appropriate sync objects can be used by end-users.

	Refactored ChildrenWatcher used by SetPartitioner into a publicly exposed
PatientChildrenWatch under recipe.watchers.

Deprecations

	connect/connect_async has been renamed to start/start_async to better match
the stop to indicate connection handling. The prior names are aliased for
the time being.

Recipes

	Added Barrier and DoubleBarrier implementation.

0.2b1 (2012-07-27)

Bug Handling

	ZOOKEEPER-1318: SystemError is caught and rethrown as the proper invalid
state exception in older zookeeper python bindings where this issue is still
valid.

	ZOOKEEPER-1431: Install the latest zc-zookeeper-static library or use the
packaged ubuntu one for ubuntu 12.04 or later.

	ZOOKEEPER-553: State handling isn’t checked via this method, we track it in
a simpler manner with the watcher to ensure we know the right state.

Features

	Exponential backoff with jitter for retrying commands.

	Gevent 0.13 and 1.0b support.

	Lock, Party, SetPartitioner, and Election recipe implementations.

	Data and Children watching API’s.

	State transition handling with listener registering to handle session state
changes (choose to fatal the app on session expiration, etc.)

	Zookeeper logging stream redirected into Python logging channel under the
name ‘Zookeeper’.

	Base client library with handler support for threading and gevent async
environments.

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	kazoo 1.3.1 documentation

 Python Module Index

 k

 			

 		
 k	

 	[image: -]
 	
 kazoo	

 	
 	
 kazoo.client	

 	
 	
 kazoo.exceptions	

 	
 	
 kazoo.handlers.gevent	

 	
 	
 kazoo.handlers.threading	

 	
 	
 kazoo.handlers.utils	

 	
 	
 kazoo.interfaces	

 	
 	
 kazoo.protocol.states	

 	
 	
 kazoo.recipe.barrier	

 	
 	
 kazoo.recipe.counter	

 	
 	
 kazoo.recipe.election	

 	
 	
 kazoo.recipe.lock	

 	
 	
 kazoo.recipe.partitioner	

 	
 	
 kazoo.recipe.party	

 	
 	
 kazoo.recipe.queue	

 	
 	
 kazoo.recipe.watchers	

 	
 	
 kazoo.retry	

 	
 	
 kazoo.security	

 	
 	
 kazoo.testing.harness	

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	kazoo 1.3.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	

 	__add__() (kazoo.recipe.counter.Counter method)

 	__call__() (kazoo.recipe.watchers.ChildrenWatch method)

 	

 	(kazoo.recipe.watchers.DataWatch method)

 	(kazoo.retry.KazooRetry method)

 	__init__() (kazoo.client.KazooClient method)

 	

 	(kazoo.recipe.barrier.Barrier method)

 	(kazoo.recipe.barrier.DoubleBarrier method)

 	(kazoo.recipe.counter.Counter method)

 	(kazoo.recipe.election.Election method)

 	(kazoo.recipe.lock.Lock method)

 	(kazoo.recipe.lock.Semaphore method)

 	(kazoo.recipe.partitioner.SetPartitioner method)

 	(kazoo.recipe.party.Party method)

 	(kazoo.recipe.party.ShallowParty method)

 	(kazoo.recipe.queue.LockingQueue method)

 	(kazoo.recipe.queue.Queue method)

 	(kazoo.recipe.watchers.ChildrenWatch method)

 	(kazoo.recipe.watchers.DataWatch method)

 	(kazoo.recipe.watchers.PatientChildrenWatch method)

 	(kazoo.retry.KazooRetry method)

 	

 	__iter__() (kazoo.recipe.party.Party method)

 	

 	(kazoo.recipe.party.ShallowParty method)

 	__len__() (kazoo.recipe.party.Party method)

 	

 	(kazoo.recipe.party.ShallowParty method)

 	(kazoo.recipe.queue.LockingQueue method)

 	(kazoo.recipe.queue.Queue method)

 	__sub__() (kazoo.recipe.counter.Counter method)

A

 	

 	ACL (class in kazoo.security)

 	acl_version (kazoo.protocol.states.ZnodeStat attribute)

 	acquire() (kazoo.recipe.lock.Lock method)

 	

 	(kazoo.recipe.lock.Semaphore method)

 	ACQUIRED (kazoo.recipe.partitioner.PartitionState attribute)

 	acquired (kazoo.recipe.partitioner.SetPartitioner attribute)

 	add_auth() (kazoo.client.KazooClient method)

 	add_auth_async() (kazoo.client.KazooClient method)

 	add_listener() (kazoo.client.KazooClient method)

 	

 	ALLOCATING (kazoo.recipe.partitioner.PartitionState attribute)

 	allocating (kazoo.recipe.partitioner.SetPartitioner attribute)

 	APIError

 	async_result() (kazoo.handlers.gevent.SequentialGeventHandler method)

 	

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	AsyncResult (class in kazoo.handlers.gevent)

 	

 	(class in kazoo.handlers.threading)

 	AUTH_FAILED (kazoo.protocol.states.KeeperState attribute)

 	AuthFailedError

B

 	

 	BadArgumentsError

 	BadVersionError

 	

 	Barrier (class in kazoo.recipe.barrier)

C

 	

 	Callback (class in kazoo.protocol.states)

 	cancel() (kazoo.recipe.election.Election method)

 	

 	(kazoo.recipe.lock.Lock method)

 	(kazoo.recipe.lock.Semaphore method)

 	CancelledError

 	capture_exceptions() (in module kazoo.handlers.utils)

 	CHANGED (kazoo.protocol.states.EventType attribute)

 	check() (kazoo.client.TransactionRequest method)

 	CHILD (kazoo.protocol.states.EventType attribute)

 	children_count (kazoo.protocol.states.ZnodeStat attribute)

 	ChildrenWatch (class in kazoo.recipe.watchers)

 	client_id (kazoo.client.KazooClient attribute)

 	client_state (kazoo.client.KazooClient attribute)

 	close() (kazoo.client.KazooClient method)

 	command() (kazoo.client.KazooClient method)

 	commit() (kazoo.client.TransactionRequest method)

 	commit_async() (kazoo.client.TransactionRequest method)

 	ConfigurationError

 	connected (kazoo.client.KazooClient attribute)

 	CONNECTED (kazoo.protocol.states.KazooState attribute)

 	

 	(kazoo.protocol.states.KeeperState attribute)

 	

 	CONNECTED_RO (kazoo.protocol.states.KeeperState attribute)

 	CONNECTING (kazoo.protocol.states.KeeperState attribute)

 	ConnectionClosedError

 	ConnectionDropped

 	ConnectionLoss

 	consume() (kazoo.recipe.queue.LockingQueue method)

 	contenders() (kazoo.recipe.election.Election method)

 	

 	(kazoo.recipe.lock.Lock method)

 	copy() (kazoo.retry.KazooRetry method)

 	Counter (class in kazoo.recipe.counter)

 	create() (kazoo.client.KazooClient method)

 	

 	(kazoo.client.TransactionRequest method)

 	(kazoo.recipe.barrier.Barrier method)

 	create_async() (kazoo.client.KazooClient method)

 	create_connection() (kazoo.interfaces.IHandler method)

 	create_pipe() (in module kazoo.handlers.utils)

 	create_tcp_socket() (in module kazoo.handlers.utils)

 	CREATED (kazoo.protocol.states.EventType attribute)

 	created (kazoo.protocol.states.ZnodeStat attribute)

 	creation_transaction_id (kazoo.protocol.states.ZnodeStat attribute)

D

 	

 	data_length (kazoo.protocol.states.ZnodeStat attribute)

 	DataInconsistency

 	DataWatch (class in kazoo.recipe.watchers)

 	delete() (kazoo.client.KazooClient method)

 	

 	(kazoo.client.TransactionRequest method)

 	

 	delete_async() (kazoo.client.KazooClient method)

 	DELETED (kazoo.protocol.states.EventType attribute)

 	dispatch_callback() (kazoo.handlers.gevent.SequentialGeventHandler method)

 	

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	DoubleBarrier (class in kazoo.recipe.barrier)

E

 	

 	Election (class in kazoo.recipe.election)

 	ensure_path() (kazoo.client.KazooClient method)

 	ensure_path_async() (kazoo.client.KazooClient method)

 	enter() (kazoo.recipe.barrier.DoubleBarrier method)

 	event_object() (kazoo.handlers.gevent.SequentialGeventHandler method)

 	

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	

 	EventType (class in kazoo.protocol.states)

 	exception (kazoo.handlers.gevent.AsyncResult attribute)

 	

 	(kazoo.interfaces.IAsyncResult attribute)

 	exists() (kazoo.client.KazooClient method)

 	exists_async() (kazoo.client.KazooClient method)

 	EXPIRED_SESSION (kazoo.protocol.states.KeeperState attribute)

F

 	

 	failed (kazoo.recipe.partitioner.SetPartitioner attribute)

 	FAILURE (kazoo.recipe.partitioner.PartitionState attribute)

 	

 	finish() (kazoo.recipe.partitioner.SetPartitioner method)

 	ForceRetryError

G

 	

 	get() (kazoo.client.KazooClient method)

 	

 	(kazoo.handlers.gevent.AsyncResult method)

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	(kazoo.recipe.queue.LockingQueue method)

 	(kazoo.recipe.queue.Queue method)

 	get_acls() (kazoo.client.KazooClient method)

 	get_acls_async() (kazoo.client.KazooClient method)

 	get_async() (kazoo.client.KazooClient method)

 	

 	get_children() (kazoo.client.KazooClient method)

 	get_children_async() (kazoo.client.KazooClient method)

 	get_nowait() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

H

 	

 	handler (kazoo.client.KazooClient attribute)

 	

 	holds_lock() (kazoo.recipe.queue.LockingQueue method)

I

 	

 	IAsyncResult (interface in kazoo.interfaces)

 	Id (class in kazoo.security)

 	IHandler (interface in kazoo.interfaces)

 	

 	InterruptedError

 	InvalidACLError

 	InvalidCallbackError

J

 	

 	join() (kazoo.recipe.party.Party method)

 	

 	(kazoo.recipe.party.ShallowParty method)

K

 	

 	kazoo.client (module)

 	kazoo.exceptions (module)

 	kazoo.handlers.gevent (module)

 	kazoo.handlers.threading (module)

 	kazoo.handlers.utils (module)

 	kazoo.interfaces (module)

 	kazoo.protocol.states (module)

 	kazoo.recipe.barrier (module)

 	kazoo.recipe.counter (module)

 	kazoo.recipe.election (module)

 	kazoo.recipe.lock (module)

 	kazoo.recipe.partitioner (module)

 	kazoo.recipe.party (module)

 	

 	kazoo.recipe.queue (module)

 	kazoo.recipe.watchers (module)

 	kazoo.retry (module)

 	kazoo.security (module)

 	kazoo.testing.harness (module)

 	KazooClient (class in kazoo.client)

 	KazooException

 	KazooRetry (class in kazoo.retry)

 	KazooState (class in kazoo.protocol.states)

 	KazooTestCase (class in kazoo.testing.harness)

 	KazooTestHarness (class in kazoo.testing.harness)

 	KeeperState (class in kazoo.protocol.states)

L

 	

 	last_modified (kazoo.protocol.states.ZnodeStat attribute)

 	last_modified_transaction_id (kazoo.protocol.states.ZnodeStat attribute)

 	lease_holders() (kazoo.recipe.lock.Semaphore method)

 	leave() (kazoo.recipe.barrier.DoubleBarrier method)

 	

 	(kazoo.recipe.party.Party method)

 	(kazoo.recipe.party.ShallowParty method)

 	Lock (class in kazoo.recipe.lock)

 	

 	lock_object() (kazoo.handlers.gevent.SequentialGeventHandler method)

 	

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	LockingQueue (class in kazoo.recipe.queue)

 	LockTimeout

 	LOST (kazoo.protocol.states.KazooState attribute)

M

 	

 	make_acl() (in module kazoo.security)

 	make_digest_acl() (in module kazoo.security)

 	

 	make_digest_acl_credential() (in module kazoo.security)

 	MarshallingError

N

 	

 	name (kazoo.interfaces.IHandler attribute)

 	NoAuthError

 	NoChildrenForEphemeralsError

 	NodeExistsError

 	

 	NoNodeError

 	NotEmptyError

 	NotReadOnlyCallError

O

 	

 	OperationTimeoutError

 	

 	owner_session_id (kazoo.protocol.states.ZnodeStat attribute)

P

 	

 	PartitionState (class in kazoo.recipe.partitioner)

 	Party (class in kazoo.recipe.party)

 	path (kazoo.protocol.states.WatchedEvent attribute)

 	

 	PatientChildrenWatch (class in kazoo.recipe.watchers)

 	put() (kazoo.recipe.queue.LockingQueue method)

 	

 	(kazoo.recipe.queue.Queue method)

 	put_all() (kazoo.recipe.queue.LockingQueue method)

Q

 	

 	Queue (class in kazoo.recipe.queue)

R

 	

 	rawlink() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	ready() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	RELEASE (kazoo.recipe.partitioner.PartitionState attribute)

 	release (kazoo.recipe.partitioner.SetPartitioner attribute)

 	release() (kazoo.recipe.lock.Lock method)

 	

 	(kazoo.recipe.lock.Semaphore method)

 	release_set() (kazoo.recipe.partitioner.SetPartitioner method)

 	remove() (kazoo.recipe.barrier.Barrier method)

 	remove_listener() (kazoo.client.KazooClient method)

 	

 	reset() (kazoo.retry.KazooRetry method)

 	restart() (kazoo.client.KazooClient method)

 	retry() (kazoo.client.KazooClient method)

 	RetryFailedError

 	rlock_object() (kazoo.handlers.gevent.SequentialGeventHandler method)

 	

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	RolledBackError

 	run() (kazoo.recipe.election.Election method)

 	RuntimeInconsistency

S

 	

 	select() (kazoo.interfaces.IHandler method)

 	Semaphore (class in kazoo.recipe.lock)

 	SequentialGeventHandler (class in kazoo.handlers.gevent)

 	SequentialThreadingHandler (class in kazoo.handlers.threading)

 	server_version() (kazoo.client.KazooClient method)

 	SessionExpiredError

 	SessionMovedError

 	set() (kazoo.client.KazooClient method)

 	

 	(kazoo.handlers.gevent.AsyncResult method)

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	set_acls() (kazoo.client.KazooClient method)

 	set_acls_async() (kazoo.client.KazooClient method)

 	set_async() (kazoo.client.KazooClient method)

 	set_data() (kazoo.client.TransactionRequest method)

 	set_exception() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	SetPartitioner (class in kazoo.recipe.partitioner)

 	

 	ShallowParty (class in kazoo.recipe.party)

 	sleep_func (kazoo.interfaces.IHandler attribute)

 	sleep_func() (kazoo.handlers.gevent.SequentialGeventHandler static method)

 	

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	socket() (kazoo.interfaces.IHandler method)

 	spawn() (kazoo.handlers.gevent.SequentialGeventHandler method)

 	

 	(kazoo.interfaces.IHandler method)

 	start() (kazoo.client.KazooClient method)

 	

 	(kazoo.handlers.gevent.SequentialGeventHandler method)

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	(kazoo.recipe.watchers.PatientChildrenWatch method)

 	start_async() (kazoo.client.KazooClient method)

 	state (kazoo.client.KazooClient attribute)

 	

 	(kazoo.protocol.states.WatchedEvent attribute)

 	stop() (kazoo.client.KazooClient method)

 	

 	(kazoo.handlers.gevent.SequentialGeventHandler method)

 	(kazoo.handlers.threading.SequentialThreadingHandler method)

 	(kazoo.interfaces.IHandler method)

 	successful() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	SUSPENDED (kazoo.protocol.states.KazooState attribute)

 	sync() (kazoo.client.KazooClient method)

 	sync_async() (kazoo.client.KazooClient method)

 	SystemZookeeperError

T

 	

 	timeout_exception (kazoo.interfaces.IHandler attribute)

 	TimeoutError

 	transaction() (kazoo.client.KazooClient method)

 	

 	TransactionRequest (class in kazoo.client)

 	type (kazoo.protocol.states.WatchedEvent attribute)

U

 	

 	unchroot() (kazoo.client.KazooClient method)

 	UnimplementedError

 	

 	unlink() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

V

 	

 	value (kazoo.interfaces.IAsyncResult attribute)

 	

 	version (kazoo.protocol.states.ZnodeStat attribute)

W

 	

 	wait() (kazoo.handlers.gevent.AsyncResult method)

 	

 	(kazoo.handlers.threading.AsyncResult method)

 	(kazoo.interfaces.IAsyncResult method)

 	(kazoo.recipe.barrier.Barrier method)

 	wait_for_acquire() (kazoo.recipe.partitioner.SetPartitioner method)

 	WatchedEvent (class in kazoo.protocol.states)

 	

 	wrap() (in module kazoo.handlers.utils)

 	WriterNotClosedException

Z

 	

 	ZnodeStat (class in kazoo.protocol.states)

 	Zookeeper

 	

 	ZookeeperError

 	ZookeeperStoppedError

 Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

 _static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 All modules for which code is available

		kazoo.client

		kazoo.exceptions

		kazoo.handlers.gevent

		kazoo.handlers.threading

		kazoo.handlers.utils

		kazoo.interfaces

		kazoo.protocol.states

		kazoo.recipe.barrier

		kazoo.recipe.counter

		kazoo.recipe.election

		kazoo.recipe.lock

		kazoo.recipe.partitioner

		kazoo.recipe.party

		kazoo.recipe.queue

		kazoo.recipe.watchers

		kazoo.retry

		kazoo.security

		kazoo.testing.harness

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/recipe/partitioner.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.partitioner

"""Zookeeper Partitioner Implementation

:class:`SetPartitioner` implements a partitioning scheme using
Zookeeper for dividing up resources amongst members of a party.

This is useful when there is a set of resources that should only be
accessed by a single process at a time that multiple processes
across a cluster might want to divide up.

Example Use-Case

- Multiple workers across a cluster need to divide up a list of queues
 so that no two workers own the same queue.

"""
import logging
import os
import socket
from functools import partial

from kazoo.exceptions import KazooException
from kazoo.protocol.states import KazooState
from kazoo.recipe.watchers import PatientChildrenWatch

log = logging.getLogger(__name__)

[docs]class PartitionState(object):
 """High level partition state values

 .. attribute:: ALLOCATING

 The set needs to be partitioned, and may require an existing
 partition set to be released before acquiring a new partition
 of the set.

 .. attribute:: ACQUIRED

 The set has been partitioned and acquired.

 .. attribute:: RELEASE

 The set needs to be repartitioned, and the current partitions
 must be released before a new allocation can be made.

 .. attribute:: FAILURE

 The set partition has failed. This occurs when the maximum
 time to partition the set is exceeded or the Zookeeper session
 is lost. The partitioner is unusable after this state and must
 be recreated.

 """
 ALLOCATING = "ALLOCATING"
 ACQUIRED = "ACQUIRED"
 RELEASE = "RELEASE"
 FAILURE = "FAILURE"

[docs]class SetPartitioner(object):
 """Partitions a set amongst members of a party

 This class will partition a set amongst members of a party such
 that each member will be given zero or more items of the set and
 each set item will be given to a single member. When new members
 enter or leave the party, the set will be re-partitioned amongst
 the members.

 When the :class:`SetPartitioner` enters the
 :attr:`~PartitionState.FAILURE` state, it is unrecoverable
 and a new :class:`SetPartitioner` should be created.

 Example:

 .. code-block:: python

 from kazoo.client import KazooClient
 client = KazooClient()

 qp = client.SetPartitioner(
 path='/work_queues', set=('queue-1', 'queue-2', 'queue-3'))

 while 1:
 if qp.failed:
 raise Exception("Lost or unable to acquire partition")
 elif qp.release:
 qp.release_set()
 elif qp.acquired:
 for partition in qp:
 # Do something with each partition
 elif qp.allocating:
 qp.wait_for_acquire()

 State Transitions

 When created, the :class:`SetPartitioner` enters the
 :attr:`PartitionState.ALLOCATING` state.

 :attr:`~PartitionState.ALLOCATING` ->
 :attr:`~PartitionState.ACQUIRED`

 Set was partitioned successfully, the partition list assigned
 is accessible via list/iter methods or calling list() on the
 :class:`SetPartitioner` instance.

 :attr:`~PartitionState.ALLOCATING` ->
 :attr:`~PartitionState.FAILURE`

 Allocating the set failed either due to a Zookeeper session
 expiration, or failure to acquire the items of the set within
 the timeout period.

 :attr:`~PartitionState.ACQUIRED` ->
 :attr:`~PartitionState.RELEASE`

 The members of the party have changed, and the set needs to be
 repartitioned. :meth:`SetPartitioner.release` should be called
 as soon as possible.

 :attr:`~PartitionState.ACQUIRED` ->
 :attr:`~PartitionState.FAILURE`

 The current partition was lost due to a Zookeeper session
 expiration.

 :attr:`~PartitionState.RELEASE` ->
 :attr:`~PartitionState.ALLOCATING`

 The current partition was released and is being re-allocated.

 """
[docs] def __init__(self, client, path, set, partition_func=None,
 identifier=None, time_boundary=30):
 """Create a :class:`~SetPartitioner` instance

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The partition path to use.
 :param set: The set of items to partition.
 :param partition_func: A function to use to decide how to
 partition the set.
 :param identifier: An identifier to use for this member of the
 party when participating. Defaults to the
 hostname + process id.
 :param time_boundary: How long the party members must be stable
 before allocation can complete.

 """
 self.state = PartitionState.ALLOCATING

 self._client = client
 self._path = path
 self._set = set
 self._partition_set = []
 self._partition_func = partition_func or self._partitioner
 self._identifier = identifier or '%s-%s' % (
 socket.getfqdn(), os.getpid())
 self._locks = []
 self._lock_path = '/'.join([path, 'locks'])
 self._party_path = '/'.join([path, 'party'])
 self._time_boundary = time_boundary

 self._acquire_event = client.handler.event_object()

 # Create basic path nodes
 client.ensure_path(path)
 client.ensure_path(self._lock_path)
 client.ensure_path(self._party_path)

 # Join the party
 self._party = client.ShallowParty(self._party_path,
 identifier=self._identifier)
 self._party.join()

 self._state_change = client.handler.rlock_object()
 client.add_listener(self._establish_sessionwatch)

 # Now watch the party and set the callback on the async result
 # so we know when we're ready
 self._children_updated = False
 self._child_watching(self._allocate_transition, async=True)

 def __iter__(self):
 """Return the partitions in this partition set"""
 for partition in self._partition_set:
 yield partition

 @property
[docs] def failed(self):
 """Corresponds to the :attr:`PartitionState.FAILURE` state"""
 return self.state == PartitionState.FAILURE

 @property
[docs] def release(self):
 """Corresponds to the :attr:`PartitionState.RELEASE` state"""
 return self.state == PartitionState.RELEASE

 @property
[docs] def allocating(self):
 """Corresponds to the :attr:`PartitionState.ALLOCATING`
 state"""
 return self.state == PartitionState.ALLOCATING

 @property
[docs] def acquired(self):
 """Corresponds to the :attr:`PartitionState.ACQUIRED` state"""
 return self.state == PartitionState.ACQUIRED

[docs] def wait_for_acquire(self, timeout=30):
 """Wait for the set to be partitioned and acquired

 :param timeout: How long to wait before returning.
 :type timeout: int

 """
 self._acquire_event.wait(timeout)

[docs] def release_set(self):
 """Call to release the set

 This method begins the step of allocating once the set has
 been released.

 """
 self._release_locks()
 if self._locks: # pragma: nocover
 # This shouldn't happen, it means we couldn't release our
 # locks, abort
 self._fail_out()
 return
 else:
 with self._state_change:
 if self.failed:
 return
 self.state = PartitionState.ALLOCATING
 self._child_watching(self._allocate_transition, async=True)

[docs] def finish(self):
 """Call to release the set and leave the party"""
 self._release_locks()
 self._fail_out()

 def _fail_out(self):
 with self._state_change:
 self.state = PartitionState.FAILURE
 if self._party.participating:
 try:
 self._party.leave()
 except KazooException: # pragma: nocover
 pass

 def _allocate_transition(self, result):
 """Called when in allocating mode, and the children settled"""
 # Did we get an exception waiting for children to settle?
 if result.exception: # pragma: nocover
 self._fail_out()
 return

 children, async_result = result.get()
 self._children_updated = False

 # Add a callback when children change on the async_result
 def updated(result):
 with self._state_change:
 if self.acquired:
 self.state = PartitionState.RELEASE
 self._children_updated = True

 async_result.rawlink(updated)

 # Split up the set
 self._partition_set = self._partition_func(
 self._identifier, list(self._party), self._set)

 # Proceed to acquire locks for the working set as needed
 for member in self._partition_set:
 if self._children_updated or self.failed:
 # Still haven't settled down, release locks acquired
 # so far and go back
 return self._abort_lock_acquisition()

 lock = self._client.Lock(self._lock_path + '/' +
 str(member))
 try:
 lock.acquire()
 except KazooException: # pragma: nocover
 return self.finish()
 self._locks.append(lock)

 # All locks acquired! Time for state transition, make sure
 # we didn't inadvertently get lost thus far
 with self._state_change:
 if self.failed: # pragma: nocover
 return self.finish()
 self.state = PartitionState.ACQUIRED
 self._acquire_event.set()

 def _release_locks(self):
 """Attempt to completely remove all the locks"""
 self._acquire_event.clear()
 for lock in self._locks[:]:
 try:
 lock.release()
 except KazooException: # pragma: nocover
 # We proceed to remove as many as possible, and leave
 # the ones we couldn't remove
 pass
 else:
 self._locks.remove(lock)

 def _abort_lock_acquisition(self):
 """Called during lock acquisition if a party change occurs"""
 self._partition_set = []
 self._release_locks()
 if self._locks:
 # This shouldn't happen, it means we couldn't release our
 # locks, abort
 self._fail_out()
 return
 return self._child_watching(self._allocate_transition)

 def _child_watching(self, func=None, async=False):
 """Called when children are being watched to stabilize

 This actually returns immediately, child watcher spins up a
 new thread/greenlet and waits for it to stabilize before
 any callbacks might run.

 """
 watcher = PatientChildrenWatch(self._client, self._party_path,
 self._time_boundary)
 asy = watcher.start()
 if func is not None:
 # We spin up the function in a separate thread/greenlet
 # to ensure that the rawlink's it might use won't be
 # blocked
 if async:
 func = partial(self._client.handler.spawn, func)
 asy.rawlink(func)
 return asy

 def _establish_sessionwatch(self, state):
 """Register ourself to listen for session events, we shut down
 if we become lost"""
 if state == KazooState.LOST:
 self._client.handler.spawn(self._fail_out)
 return True

 def _partitioner(self, identifier, members, partitions):
 # Ensure consistent order of partitions/members
 all_partitions = sorted(partitions)
 workers = sorted(members)

 i = workers.index(identifier)
 # Now return the partition list starting at our location and
 # skipping the other workers
 return all_partitions[i::len(workers)]

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/down.png

_modules/kazoo/recipe/watchers.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.watchers

"""Higher level child and data watching API's.
"""
import logging
import time
import warnings
from functools import partial, wraps

from kazoo.retry import KazooRetry
from kazoo.exceptions import ConnectionClosedError, NoNodeError
from kazoo.protocol.states import KazooState

log = logging.getLogger(__name__)

_STOP_WATCHING = object()

def _ignore_closed(func):
 @wraps(func)
 def wrapper(*args, **kwargs):
 try:
 return func(*args, **kwargs)
 except ConnectionClosedError:
 pass
 return wrapper

[docs]class DataWatch(object):
 """Watches a node for data updates and calls the specified
 function each time it changes

 The function will also be called the very first time its
 registered to get the data.

 Returning `False` from the registered function will disable future
 data change calls. If the client connection is closed (using the
 close command), the DataWatch will no longer get updates.

 If the function supplied takes three arguments, then the third one
 will be a :class:`~kazoo.protocol.states.WatchedEvent`. It will
 only be set if the change to the data occurs as a result of the
 server notifying the watch that there has been a change. Events
 like reconnection or the first call will not include an event.

 If the node does not exist, then the function will be called with
 ``None`` for all values.

 Example with client:

 .. code-block:: python

 @client.DataWatch('/path/to/watch')
 def my_func(data, stat):
 print("Data is %s" % data)
 print("Version is %s" % stat.version)

 # Above function is called immediately and prints

 # Or if you want the event object
 @client.DataWatch('/path/to/watch')
 def my_func(data, stat, event):
 print("Data is %s" % data)
 print("Version is %s" % stat.version)
 print("Event is %s" % event)

 .. versionchanged:: 1.2

 DataWatch now ignores additional arguments that were previously
 passed to it and warns that they are no longer respected.

 """
[docs] def __init__(self, client, path, func=None, *args, **kwargs):
 """Create a data watcher for a path

 :param client: A zookeeper client.
 :type client: :class:`~kazoo.client.KazooClient`
 :param path: The path to watch for data changes on.
 :type path: str
 :param func: Function to call initially and every time the
 node changes. `func` will be called with a
 tuple, the value of the node and a
 :class:`~kazoo.client.ZnodeStat` instance.
 :type func: callable

 """
 self._client = client
 self._path = path
 self._func = func
 self._stopped = False
 self._run_lock = client.handler.lock_object()
 self._version = None
 self._retry = KazooRetry(max_tries=None,
 sleep_func=client.handler.sleep_func)
 self._include_event = None
 self._ever_called = False

 if args or kwargs:
 warnings.warn('Passing additional arguments to DataWatch is'
 ' deprecated. ignore_missing_node is now assumed '
 ' to be True by default, and the event will be '
 ' sent if the function can handle receiving it',
 DeprecationWarning, stacklevel=2)

 # Register our session listener if we're going to resume
 # across session losses
 if func is not None:
 self._client.add_listener(self._session_watcher)
 self._get_data()

[docs] def __call__(self, func):
 """Callable version for use as a decorator

 :param func: Function to call initially and every time the
 data changes. `func` will be called with a
 tuple, the value of the node and a
 :class:`~kazoo.client.ZnodeStat` instance.
 :type func: callable

 """
 self._func = func

 self._client.add_listener(self._session_watcher)
 self._get_data()
 return func

 def _log_func_exception(self, data, stat, event=None):
 try:
 # For backwards compatibility, don't send event to the
 # callback unless the send_event is set in constructor
 if not self._ever_called:
 self._ever_called = True
 try:
 result = self._func(data, stat, event)
 except TypeError:
 result = self._func(data, stat)
 if result is False:
 self._stopped = True
 self._client.remove_listener(self._session_watcher)
 except Exception as exc:
 log.exception(exc)
 raise

 @_ignore_closed
 def _get_data(self, event=None):
 # Ensure this runs one at a time, possible because the session
 # watcher may trigger a run
 with self._run_lock:
 if self._stopped:
 return

 initial_version = self._version

 try:
 data, stat = self._retry(self._client.get,
 self._path, self._watcher)
 except NoNodeError:
 data = None

 # This will set 'stat' to None if the node does not yet
 # exist.
 stat = self._retry(self._client.exists, self._path,
 self._watcher)
 if stat:
 self._client.handler.spawn(self._get_data)
 return

 # No node data, clear out version
 if stat is None:
 self._version = None
 else:
 self._version = stat.mzxid

 # Call our function if its the first time ever, or if the
 # version has changed
 if initial_version != self._version or not self._ever_called:
 self._log_func_exception(data, stat, event)

 def _watcher(self, event):
 self._get_data(event=event)

 def _set_watch(self, state):
 with self._run_lock:
 self._watch_established = state

 def _session_watcher(self, state):
 if state == KazooState.CONNECTED:
 self._client.handler.spawn(self._get_data)

[docs]class ChildrenWatch(object):
 """Watches a node for children updates and calls the specified
 function each time it changes

 The function will also be called the very first time its
 registered to get children.

 Returning `False` from the registered function will disable future
 children change calls. If the client connection is closed (using
 the close command), the ChildrenWatch will no longer get updates.

 if send_event=True in __init__, then the function will always be
 called with second parameter, ``event``. Upon initial call or when
 recovering a lost session the ``event`` is always ``None``.
 Otherwise it's a :class:`~kazoo.prototype.state.WatchedEvent`
 instance.

 Example with client:

 .. code-block:: python

 @client.ChildrenWatch('/path/to/watch')
 def my_func(children):
 print "Children are %s" % children

 # Above function is called immediately and prints children

 """
[docs] def __init__(self, client, path, func=None,
 allow_session_lost=True, send_event=False):
 """Create a children watcher for a path

 :param client: A zookeeper client.
 :type client: :class:`~kazoo.client.KazooClient`
 :param path: The path to watch for children on.
 :type path: str
 :param func: Function to call initially and every time the
 children change. `func` will be called with a
 single argument, the list of children.
 :type func: callable
 :param allow_session_lost: Whether the watch should be
 re-registered if the zookeeper
 session is lost.
 :type allow_session_lost: bool
 :type send_event: bool
 :param send_event: Whether the function should be passed the
 event sent by ZooKeeper or None upon
 initialization (see class documentation)

 The path must already exist for the children watcher to
 run.

 """
 self._client = client
 self._path = path
 self._func = func
 self._send_event = send_event
 self._stopped = False
 self._watch_established = False
 self._allow_session_lost = allow_session_lost
 self._run_lock = client.handler.lock_object()
 self._prior_children = None

 # Register our session listener if we're going to resume
 # across session losses
 if func is not None:
 if allow_session_lost:
 self._client.add_listener(self._session_watcher)
 self._get_children()

[docs] def __call__(self, func):
 """Callable version for use as a decorator

 :param func: Function to call initially and every time the
 children change. `func` will be called with a
 single argument, the list of children.
 :type func: callable

 """
 self._func = func

 if self._allow_session_lost:
 self._client.add_listener(self._session_watcher)
 self._get_children()
 return func

 @_ignore_closed
 def _get_children(self, event=None):
 with self._run_lock: # Ensure this runs one at a time
 if self._stopped:
 return

 children = self._client.retry(self._client.get_children,
 self._path, self._watcher)
 if not self._watch_established:
 self._watch_established = True

 if self._prior_children is not None and \
 self._prior_children == children:
 return

 self._prior_children = children

 try:
 if self._send_event:
 result = self._func(children, event)
 else:
 result = self._func(children)
 if result is False:
 self._stopped = True
 except Exception as exc:
 log.exception(exc)
 raise

 def _watcher(self, event):
 self._get_children(event)

 def _session_watcher(self, state):
 if state in (KazooState.LOST, KazooState.SUSPENDED):
 self._watch_established = False
 elif state == KazooState.CONNECTED and \
 not self._watch_established and not self._stopped:
 self._client.handler.spawn(self._get_children)

[docs]class PatientChildrenWatch(object):
 """Patient Children Watch that returns values after the children
 of a node don't change for a period of time

 A separate watcher for the children of a node, that ignores
 changes within a boundary time and sets the result only when the
 boundary time has elapsed with no children changes.

 Example::

 watcher = PatientChildrenWatch(client, '/some/path',
 time_boundary=5)
 async_object = watcher.start()

 # Blocks until the children have not changed for time boundary
 # (5 in this case) seconds, returns children list and an
 # async_result that will be set if the children change in the
 # future
 children, child_async = async_object.get()

 .. note::

 This Watch is different from :class:`DataWatch` and
 :class:`ChildrenWatch` as it only returns once, does not take
 a function that is called, and provides an
 :class:`~kazoo.interfaces.IAsyncResult` object that can be
 checked to see if the children have changed later.

 """
[docs] def __init__(self, client, path, time_boundary=30):
 self.client = client
 self.path = path
 self.children = []
 self.time_boundary = time_boundary
 self.children_changed = client.handler.event_object()

[docs] def start(self):
 """Begin the watching process asynchronously

 :returns: An :class:`~kazoo.interfaces.IAsyncResult` instance
 that will be set when no change has occurred to the
 children for time boundary seconds.

 """
 self.asy = asy = self.client.handler.async_result()
 self.client.handler.spawn(self._inner_start)
 return asy

 def _inner_start(self):
 try:
 while True:
 async_result = self.client.handler.async_result()
 self.children = self.client.retry(
 self.client.get_children, self.path,
 partial(self._children_watcher, async_result))
 self.client.handler.sleep_func(self.time_boundary)

 if self.children_changed.is_set():
 self.children_changed.clear()
 else:
 break

 self.asy.set((self.children, async_result))
 except Exception as exc:
 self.asy.set_exception(exc)

 def _children_watcher(self, async, event):
 self.children_changed.set()
 async.set(time.time())

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/comment.png

_modules/kazoo/client.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.client

"""Kazoo Zookeeper Client"""
import inspect
import logging
import os
import re
import warnings
from collections import defaultdict, deque
from functools import partial
from os.path import split

from kazoo.exceptions import (
 AuthFailedError,
 ConfigurationError,
 ConnectionClosedError,
 ConnectionLoss,
 NoNodeError,
 NodeExistsError,
 SessionExpiredError,
 WriterNotClosedException,
)
from kazoo.handlers.threading import SequentialThreadingHandler
from kazoo.handlers.utils import capture_exceptions, wrap
from kazoo.hosts import collect_hosts
from kazoo.protocol.connection import ConnectionHandler
from kazoo.protocol.paths import normpath
from kazoo.protocol.paths import _prefix_root
from kazoo.protocol.serialization import (
 Auth,
 CheckVersion,
 CloseInstance,
 Create,
 Delete,
 Exists,
 GetChildren,
 GetChildren2,
 GetACL,
 SetACL,
 GetData,
 SetData,
 Sync,
 Transaction
)
from kazoo.protocol.states import KazooState
from kazoo.protocol.states import KeeperState
from kazoo.retry import KazooRetry
from kazoo.security import ACL
from kazoo.security import OPEN_ACL_UNSAFE

convenience API
from kazoo.recipe.barrier import Barrier
from kazoo.recipe.barrier import DoubleBarrier
from kazoo.recipe.counter import Counter
from kazoo.recipe.election import Election
from kazoo.recipe.lock import Lock
from kazoo.recipe.lock import Semaphore
from kazoo.recipe.partitioner import SetPartitioner
from kazoo.recipe.party import Party
from kazoo.recipe.party import ShallowParty
from kazoo.recipe.queue import Queue
from kazoo.recipe.queue import LockingQueue
from kazoo.recipe.watchers import ChildrenWatch
from kazoo.recipe.watchers import DataWatch

try: # pragma: nocover
 basestring
except NameError: # pragma: nocover
 basestring = str

LOST_STATES = (KeeperState.EXPIRED_SESSION, KeeperState.AUTH_FAILED,
 KeeperState.CLOSED)
ENVI_VERSION = re.compile('[\w\s:.]*=([\d\.]*).*', re.DOTALL)
log = logging.getLogger(__name__)

_RETRY_COMPAT_DEFAULTS = dict(
 max_retries=None,
 retry_delay=0.1,
 retry_backoff=2,
 retry_jitter=0.8,
 retry_max_delay=3600,
)

_RETRY_COMPAT_MAPPING = dict(
 max_retries='max_tries',
 retry_delay='delay',
 retry_backoff='backoff',
 retry_jitter='max_jitter',
 retry_max_delay='max_delay',
)

[docs]class KazooClient(object):
 """An Apache Zookeeper Python client supporting alternate callback
 handlers and high-level functionality.

 Watch functions registered with this class will not get session
 events, unlike the default Zookeeper watches. They will also be
 called with a single argument, a
 :class:`~kazoo.protocol.states.WatchedEvent` instance.

 """
[docs] def __init__(self, hosts='127.0.0.1:2181',
 timeout=10.0, client_id=None, handler=None,
 default_acl=None, auth_data=None, read_only=None,
 randomize_hosts=True, connection_retry=None,
 command_retry=None, logger=None, **kwargs):
 """Create a :class:`KazooClient` instance. All time arguments
 are in seconds.

 :param hosts: Comma-separated list of hosts to connect to
 (e.g. 127.0.0.1:2181,127.0.0.1:2182,[::1]:2183).
 :param timeout: The longest to wait for a Zookeeper connection.
 :param client_id: A Zookeeper client id, used when
 re-establishing a prior session connection.
 :param handler: An instance of a class implementing the
 :class:`~kazoo.interfaces.IHandler` interface
 for callback handling.
 :param default_acl: A default ACL used on node creation.
 :param auth_data:
 A list of authentication credentials to use for the
 connection. Should be a list of (scheme, credential)
 tuples as :meth:`add_auth` takes.
 :param read_only: Allow connections to read only servers.
 :param randomize_hosts: By default randomize host selection.
 :param connection_retry:
 A :class:`kazoo.retry.KazooRetry` object to use for
 retrying the connection to Zookeeper. Also can be a dict of
 options which will be used for creating one.
 :param command_retry:
 A :class:`kazoo.retry.KazooRetry` object to use for
 the :meth:`KazooClient.retry` method. Also can be a dict of
 options which will be used for creating one.
 :param logger: A custom logger to use instead of the module
 global `log` instance.

 Basic Example:

 .. code-block:: python

 zk = KazooClient()
 zk.start()
 children = zk.get_children('/')
 zk.stop()

 As a convenience all recipe classes are available as attributes
 and get automatically bound to the client. For example::

 zk = KazooClient()
 zk.start()
 lock = zk.Lock('/lock_path')

 .. versionadded:: 0.6
 The read_only option. Requires Zookeeper 3.4+

 .. versionadded:: 0.6
 The retry_max_delay option.

 .. versionadded:: 0.6
 The randomize_hosts option.

 .. versionchanged:: 0.8
 Removed the unused watcher argument (was second argument).

 .. versionadded:: 1.2
 The connection_retry, command_retry and logger options.

 """
 self.logger = logger or log

 # Record the handler strategy used
 self.handler = handler if handler else SequentialThreadingHandler()
 if inspect.isclass(self.handler):
 raise ConfigurationError("Handler must be an instance of a class, "
 "not the class: %s" % self.handler)

 self.auth_data = auth_data if auth_data else set([])
 self.default_acl = default_acl
 self.randomize_hosts = randomize_hosts
 self.hosts, chroot = collect_hosts(hosts, randomize_hosts)
 if chroot:
 self.chroot = normpath(chroot)
 else:
 self.chroot = ''

 # Curator like simplified state tracking, and listeners for
 # state transitions
 self._state = KeeperState.CLOSED
 self.state = KazooState.LOST
 self.state_listeners = set()

 self._reset()
 self.read_only = read_only

 if client_id:
 self._session_id = client_id[0]
 self._session_passwd = client_id[1]
 else:
 self._reset_session()

 # ZK uses milliseconds
 self._session_timeout = int(timeout * 1000)

 # We use events like twitter's client to track current and
 # desired state (connected, and whether to shutdown)
 self._live = self.handler.event_object()
 self._writer_stopped = self.handler.event_object()
 self._stopped = self.handler.event_object()
 self._stopped.set()
 self._writer_stopped.set()

 self.retry = self._conn_retry = None

 if connection_retry is not None:
 self._conn_retry = connection_retry
 if self.handler.sleep_func != self._conn_retry.sleep_func:
 raise ConfigurationError("Retry handler and event handler "
 " must use the same sleep func")

 if command_retry is not None:
 self.retry = command_retry
 if self.handler.sleep_func != self.retry.sleep_func:
 raise ConfigurationError("Command retry handler and event handler "
 " must use the same sleep func")

 if self.retry is None or self._conn_retry is None:
 old_retry_keys = dict(_RETRY_COMPAT_DEFAULTS)
 for key in old_retry_keys:
 try:
 old_retry_keys[key] = kwargs.pop(key)
 warnings.warn('Passing retry configuration param %s to the'
 ' client directly is deprecated, please pass a'
 ' configured retry object (using param %s)' % (
 key, _RETRY_COMPAT_MAPPING[key]),
 DeprecationWarning, stacklevel=2)
 except KeyError:
 pass

 retry_keys = {}
 for oldname, value in old_retry_keys.items():
 retry_keys[_RETRY_COMPAT_MAPPING[oldname]] = value

 if self._conn_retry is None:
 self._conn_retry = KazooRetry(
 sleep_func=self.handler.sleep_func,
 **retry_keys)
 if self.retry is None:
 self.retry = KazooRetry(
 sleep_func=self.handler.sleep_func,
 **retry_keys)

 self._conn_retry.interrupt = lambda: self._stopped.is_set()
 self._connection = ConnectionHandler(self, self._conn_retry.copy(),
 logger=self.logger)

 self.Barrier = partial(Barrier, self)
 self.Counter = partial(Counter, self)
 self.DoubleBarrier = partial(DoubleBarrier, self)
 self.ChildrenWatch = partial(ChildrenWatch, self)
 self.DataWatch = partial(DataWatch, self)
 self.Election = partial(Election, self)
 self.Lock = partial(Lock, self)
 self.Party = partial(Party, self)
 self.Queue = partial(Queue, self)
 self.LockingQueue = partial(LockingQueue, self)
 self.SetPartitioner = partial(SetPartitioner, self)
 self.Semaphore = partial(Semaphore, self)
 self.ShallowParty = partial(ShallowParty, self)

 # If we got any unhandled keywords, complain like python would
 if kwargs:
 raise TypeError('__init__() got unexpected keyword arguments: %s'
 % (kwargs.keys(),))

 def _reset(self):
 """Resets a variety of client states for a new connection."""
 self._queue = deque()
 self._pending = deque()

 self._reset_watchers()
 self._reset_session()
 self.last_zxid = 0

 def _reset_watchers(self):
 self._child_watchers = defaultdict(set)
 self._data_watchers = defaultdict(set)

 def _reset_session(self):
 self._session_id = None
 self._session_passwd = b'\x00' * 16

 @property
[docs] def client_state(self):
 """Returns the last Zookeeper client state

 This is the non-simplified state information and is generally
 not as useful as the simplified KazooState information.

 """
 return self._state

 @property
[docs] def client_id(self):
 """Returns the client id for this Zookeeper session if
 connected.

 :returns: client id which consists of the session id and
 password.
 :rtype: tuple
 """
 if self._live.is_set():
 return (self._session_id, self._session_passwd)
 return None

 @property
[docs] def connected(self):
 """Returns whether the Zookeeper connection has been
 established."""
 return self._live.is_set()

[docs] def add_listener(self, listener):
 """Add a function to be called for connection state changes.

 This function will be called with a
 :class:`~kazoo.protocol.states.KazooState` instance indicating
 the new connection state on state transitions.

 .. warning::

 This function must not block. If its at all likely that it
 might need data or a value that could result in blocking
 than the :meth:`~kazoo.interfaces.IHandler.spawn` method
 should be used so that the listener can return immediately.

 """
 if not (listener and callable(listener)):
 raise ConfigurationError("listener must be callable")
 self.state_listeners.add(listener)

[docs] def remove_listener(self, listener):
 """Remove a listener function"""
 self.state_listeners.discard(listener)

 def _make_state_change(self, state):
 # skip if state is current
 if self.state == state:
 return

 self.state = state

 # Create copy of listeners for iteration in case one needs to
 # remove itself
 for listener in list(self.state_listeners):
 try:
 remove = listener(state)
 if remove is True:
 self.remove_listener(listener)
 except Exception:
 self.logger.exception("Error in connection state listener")

 def _session_callback(self, state):
 if state == self._state:
 return

 # Note that we don't check self.state == LOST since that's also
 # the client's initial state
 dead_state = self._state in LOST_STATES
 self._state = state

 # If we were previously closed or had an expired session, and
 # are now connecting, don't bother with the rest of the
 # transitions since they only apply after
 # we've established a connection
 if dead_state and state == KeeperState.CONNECTING:
 self.logger.debug("Skipping state change")
 return

 if state in (KeeperState.CONNECTED, KeeperState.CONNECTED_RO):
 self.logger.info("Zookeeper connection established, state: %s", state)
 self._live.set()
 self._make_state_change(KazooState.CONNECTED)
 elif state in LOST_STATES:
 self.logger.info("Zookeeper session lost, state: %s", state)
 self._live.clear()
 self._make_state_change(KazooState.LOST)
 self._notify_pending(state)
 self._reset()
 else:
 self.logger.info("Zookeeper connection lost")
 # Connection lost
 self._live.clear()
 self._notify_pending(state)
 self._make_state_change(KazooState.SUSPENDED)
 self._reset_watchers()

 def _notify_pending(self, state):
 """Used to clear a pending response queue and request queue
 during connection drops."""
 if state == KeeperState.AUTH_FAILED:
 exc = AuthFailedError()
 elif state == KeeperState.EXPIRED_SESSION:
 exc = SessionExpiredError()
 else:
 exc = ConnectionLoss()

 while True:
 try:
 request, async_object, xid = self._pending.popleft()
 if async_object:
 async_object.set_exception(exc)
 except IndexError:
 break

 while True:
 try:
 request, async_object = self._queue.popleft()
 if async_object:
 async_object.set_exception(exc)
 except IndexError:
 break

 def _safe_close(self):
 self.handler.stop()
 timeout = self._session_timeout // 1000
 if timeout < 10:
 timeout = 10
 if not self._connection.stop(timeout):
 raise WriterNotClosedException(
 "Writer still open from prior connection "
 "and wouldn't close after %s seconds" % timeout)

 def _call(self, request, async_object):
 """Ensure there's an active connection and put the request in
 the queue if there is."""

 if self._state == KeeperState.AUTH_FAILED:
 async_object.set_exception(AuthFailedError())
 return
 elif self._state == KeeperState.CLOSED:
 async_object.set_exception(ConnectionClosedError(
 "Connection has been closed"))
 return
 elif self._state in (KeeperState.EXPIRED_SESSION,
 KeeperState.CONNECTING):
 async_object.set_exception(SessionExpiredError())
 return

 self._queue.append((request, async_object))

 # wake the connection, guarding against a race with close()
 write_pipe = self._connection._write_pipe
 if write_pipe is None:
 async_object.set_exception(ConnectionClosedError(
 "Connection has been closed"))
 try:
 os.write(write_pipe, b'\0')
 except:
 async_object.set_exception(ConnectionClosedError(
 "Connection has been closed"))

[docs] def start(self, timeout=15):
 """Initiate connection to ZK.

 :param timeout: Time in seconds to wait for connection to
 succeed.
 :raises: :attr:`~kazoo.interfaces.IHandler.timeout_exception`
 if the connection wasn't established within `timeout`
 seconds.

 """
 event = self.start_async()
 event.wait(timeout=timeout)
 if not self.connected:
 # We time-out, ensure we are disconnected
 self.stop()
 raise self.handler.timeout_exception("Connection time-out")

 if self.chroot and not self.exists("/"):
 warnings.warn("No chroot path exists, the chroot path "
 "should be created before normal use.")

[docs] def start_async(self):
 """Asynchronously initiate connection to ZK.

 :returns: An event object that can be checked to see if the
 connection is alive.
 :rtype: :class:`~threading.Event` compatible object.

 """
 # If we're already connected, ignore
 if self._live.is_set():
 return self._live

 # Make sure we're safely closed
 self._safe_close()

 # We've been asked to connect, clear the stop and our writer
 # thread indicator
 self._stopped.clear()
 self._writer_stopped.clear()

 # Start the handler
 self.handler.start()

 # Start the connection
 self._connection.start()
 return self._live

[docs] def stop(self):
 """Gracefully stop this Zookeeper session.

 This method can be called while a reconnection attempt is in
 progress, which will then be halted.

 Once the connection is closed, its session becomes invalid. All
 the ephemeral nodes in the ZooKeeper server associated with the
 session will be removed. The watches left on those nodes (and
 on their parents) will be triggered.

 """
 if self._stopped.is_set():
 return

 self._stopped.set()
 self._queue.append((CloseInstance, None))
 os.write(self._connection._write_pipe, b'\0')
 self._safe_close()

[docs] def restart(self):
 """Stop and restart the Zookeeper session."""
 self.stop()
 self.start()

[docs] def close(self):
 """Free any resources held by the client.

 This method should be called on a stopped client before it is
 discarded. Not doing so may result in filehandles being leaked.

 .. versionadded:: 1.0
 """
 self._connection.close()

[docs] def command(self, cmd=b'ruok'):
 """Sent a management command to the current ZK server.

 Examples are `ruok`, `envi` or `stat`.

 :returns: An unstructured textual response.
 :rtype: str

 :raises:
 :exc:`ConnectionLoss` if there is no connection open, or
 possibly a :exc:`socket.error` if there's a problem with
 the connection used just for this command.

 .. versionadded:: 0.5

 """
 if not self._live.is_set():
 raise ConnectionLoss("No connection to server")

 peer = self._connection._socket.getpeername()
 sock = self.handler.create_connection(
 peer, timeout=self._session_timeout / 1000.0)
 sock.sendall(cmd)
 result = sock.recv(8192)
 sock.close()
 return result.decode('utf-8', 'replace')

[docs] def server_version(self):
 """Get the version of the currently connected ZK server.

 :returns: The server version, for example (3, 4, 3).
 :rtype: tuple

 .. versionadded:: 0.5

 """
 data = self.command(b'envi')
 string = ENVI_VERSION.match(data).group(1)
 return tuple([int(i) for i in string.split('.')])

[docs] def add_auth(self, scheme, credential):
 """Send credentials to server.

 :param scheme: authentication scheme (default supported:
 "digest").
 :param credential: the credential -- value depends on scheme.
 """
 return self.add_auth_async(scheme, credential)

[docs] def add_auth_async(self, scheme, credential):
 """Asynchronously send credentials to server. Takes the same
 arguments as :meth:`add_auth`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(scheme, basestring):
 raise TypeError("Invalid type for scheme")
 if not isinstance(credential, basestring):
 raise TypeError("Invalid type for credential")
 self._call(Auth(0, scheme, credential), None)
 return True

[docs] def unchroot(self, path):
 """Strip the chroot if applicable from the path."""
 if not self.chroot:
 return path

 if path.startswith(self.chroot):
 return path[len(self.chroot):]
 else:
 return path

[docs] def sync_async(self, path):
 """Asynchronous sync.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 async_result = self.handler.async_result()
 self._call(Sync(_prefix_root(self.chroot, path)), async_result)
 return async_result

[docs] def sync(self, path):
 """Sync, blocks until response is acknowledged.

 Flushes channel between process and leader.

 :param path: path of node.
 :returns: The node path that was synced.
 :raises:
 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 .. versionadded:: 0.5

 """
 return self.sync_async(path).get()

[docs] def create(self, path, value=b"", acl=None, ephemeral=False,
 sequence=False, makepath=False):
 """Create a node with the given value as its data. Optionally
 set an ACL on the node.

 The ephemeral and sequence arguments determine the type of the
 node.

 An ephemeral node will be automatically removed by ZooKeeper
 when the session associated with the creation of the node
 expires.

 A sequential node will be given the specified path plus a
 suffix `i` where i is the current sequential number of the
 node. The sequence number is always fixed length of 10 digits,
 0 padded. Once such a node is created, the sequential number
 will be incremented by one.

 If a node with the same actual path already exists in
 ZooKeeper, a NodeExistsError will be raised. Note that since a
 different actual path is used for each invocation of creating
 sequential nodes with the same path argument, the call will
 never raise NodeExistsError.

 If the parent node does not exist in ZooKeeper, a NoNodeError
 will be raised. Setting the optional `makepath` argument to
 `True` will create all missing parent nodes instead.

 An ephemeral node cannot have children. If the parent node of
 the given path is ephemeral, a NoChildrenForEphemeralsError
 will be raised.

 This operation, if successful, will trigger all the watches
 left on the node of the given path by :meth:`exists` and
 :meth:`get` API calls, and the watches left on the parent node
 by :meth:`get_children` API calls.

 The maximum allowable size of the node value is 1 MB. Values
 larger than this will cause a ZookeeperError to be raised.

 :param path: Path of node.
 :param value: Initial bytes value of node.
 :param acl: :class:`~kazoo.security.ACL` list.
 :param ephemeral: Boolean indicating whether node is ephemeral
 (tied to this session).
 :param sequence: Boolean indicating whether path is suffixed
 with a unique index.
 :param makepath: Whether the path should be created if it
 doesn't exist.
 :returns: Real path of the new node.
 :rtype: str

 :raises:
 :exc:`~kazoo.exceptions.NodeExistsError` if the node
 already exists.

 :exc:`~kazoo.exceptions.NoNodeError` if parent nodes are
 missing.

 :exc:`~kazoo.exceptions.NoChildrenForEphemeralsError` if
 the parent node is an ephemeral node.

 :exc:`~kazoo.exceptions.ZookeeperError` if the provided
 value is too large.

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 """
 return self.create_async(path, value, acl=acl, ephemeral=ephemeral,
 sequence=sequence, makepath=makepath).get()

[docs] def create_async(self, path, value=b"", acl=None, ephemeral=False,
 sequence=False, makepath=False):
 """Asynchronously create a ZNode. Takes the same arguments as
 :meth:`create`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 .. versionadded:: 1.1
 The makepath option.

 """
 if acl is None and self.default_acl:
 acl = self.default_acl

 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if acl and (isinstance(acl, ACL) or
 not isinstance(acl, (tuple, list))):
 raise TypeError("acl must be a tuple/list of ACL's")
 if not isinstance(value, bytes):
 raise TypeError("value must be a byte string")
 if not isinstance(ephemeral, bool):
 raise TypeError("ephemeral must be a bool")
 if not isinstance(sequence, bool):
 raise TypeError("sequence must be a bool")
 if not isinstance(makepath, bool):
 raise TypeError("makepath must be a bool")

 flags = 0
 if ephemeral:
 flags |= 1
 if sequence:
 flags |= 2
 if acl is None:
 acl = OPEN_ACL_UNSAFE

 async_result = self.handler.async_result()

 def do_create():
 self._create_async_inner(path, value, acl, flags, trailing=sequence).rawlink(create_completion)

 @capture_exceptions(async_result)
 def retry_completion(result):
 result.get()
 do_create()

 @wrap(async_result)
 def create_completion(result):
 try:
 return self.unchroot(result.get())
 except NoNodeError:
 if not makepath:
 raise
 if sequence and path.endswith('/'):
 parent = path.rstrip('/')
 else:
 parent, _ = split(path)
 self.ensure_path_async(parent, acl).rawlink(retry_completion)

 do_create()
 return async_result

 def _create_async_inner(self, path, value, acl, flags, trailing=False):
 async_result = self.handler.async_result()
 self._call(Create(_prefix_root(self.chroot, path, trailing=trailing), value, acl, flags),
 async_result)
 return async_result

[docs] def ensure_path(self, path, acl=None):
 """Recursively create a path if it doesn't exist.

 :param path: Path of node.
 :param acl: Permissions for node.

 """
 return self.ensure_path_async(path, acl).get()

[docs] def ensure_path_async(self, path, acl=None):
 """Recursively create a path asynchronously if it doesn't
 exist. Takes the same arguments as :meth:`ensure_path`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 .. versionadded:: 1.1

 """
 acl = acl or self.default_acl
 async_result = self.handler.async_result()

 @wrap(async_result)
 def create_completion(result):
 try:
 return result.get()
 except NodeExistsError:
 return True

 @capture_exceptions(async_result)
 def prepare_completion(next_path, result):
 result.get()
 self.create_async(next_path, acl=acl).rawlink(create_completion)

 @wrap(async_result)
 def exists_completion(path, result):
 if result.get():
 return True
 parent, node = split(path)
 if node:
 self.ensure_path_async(parent, acl=acl).rawlink(
 partial(prepare_completion, path))
 else:
 self.create_async(path, acl=acl).rawlink(create_completion)

 self.exists_async(path).rawlink(partial(exists_completion, path))

 return async_result

[docs] def exists(self, path, watch=None):
 """Check if a node exists.

 If a watch is provided, it will be left on the node with the
 given path. The watch will be triggered by a successful
 operation that creates/deletes the node or sets the data on the
 node.

 :param path: Path of node.
 :param watch: Optional watch callback to set for future changes
 to this path.
 :returns: ZnodeStat of the node if it exists, else None if the
 node does not exist.
 :rtype: :class:`~kazoo.protocol.states.ZnodeStat` or `None`.

 :raises:
 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 """
 return self.exists_async(path, watch).get()

[docs] def exists_async(self, path, watch=None):
 """Asynchronously check if a node exists. Takes the same
 arguments as :meth:`exists`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if watch and not callable(watch):
 raise TypeError("watch must be a callable")

 async_result = self.handler.async_result()
 self._call(Exists(_prefix_root(self.chroot, path), watch),
 async_result)
 return async_result

[docs] def get(self, path, watch=None):
 """Get the value of a node.

 If a watch is provided, it will be left on the node with the
 given path. The watch will be triggered by a successful
 operation that sets data on the node, or deletes the node.

 :param path: Path of node.
 :param watch: Optional watch callback to set for future changes
 to this path.
 :returns:
 Tuple (value, :class:`~kazoo.protocol.states.ZnodeStat`) of
 node.
 :rtype: tuple

 :raises:
 :exc:`~kazoo.exceptions.NoNodeError` if the node doesn't
 exist

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code

 """
 return self.get_async(path, watch).get()

[docs] def get_async(self, path, watch=None):
 """Asynchronously get the value of a node. Takes the same
 arguments as :meth:`get`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if watch and not callable(watch):
 raise TypeError("watch must be a callable")

 async_result = self.handler.async_result()
 self._call(GetData(_prefix_root(self.chroot, path), watch),
 async_result)
 return async_result

[docs] def get_children(self, path, watch=None, include_data=False):
 """Get a list of child nodes of a path.

 If a watch is provided it will be left on the node with the
 given path. The watch will be triggered by a successful
 operation that deletes the node of the given path or
 creates/deletes a child under the node.

 The list of children returned is not sorted and no guarantee is
 provided as to its natural or lexical order.

 :param path: Path of node to list.
 :param watch: Optional watch callback to set for future changes
 to this path.
 :param include_data:
 Include the :class:`~kazoo.protocol.states.ZnodeStat` of
 the node in addition to the children. This option changes
 the return value to be a tuple of (children, stat).

 :returns: List of child node names, or tuple if `include_data`
 is `True`.
 :rtype: list

 :raises:
 :exc:`~kazoo.exceptions.NoNodeError` if the node doesn't
 exist.

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 .. versionadded:: 0.5
 The `include_data` option.

 """
 return self.get_children_async(path, watch, include_data).get()

[docs] def get_children_async(self, path, watch=None, include_data=False):
 """Asynchronously get a list of child nodes of a path. Takes
 the same arguments as :meth:`get_children`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if watch and not callable(watch):
 raise TypeError("watch must be a callable")
 if not isinstance(include_data, bool):
 raise TypeError("include_data must be a bool")

 async_result = self.handler.async_result()
 if include_data:
 req = GetChildren2(_prefix_root(self.chroot, path), watch)
 else:
 req = GetChildren(_prefix_root(self.chroot, path), watch)
 self._call(req, async_result)
 return async_result

[docs] def get_acls(self, path):
 """Return the ACL and stat of the node of the given path.

 :param path: Path of the node.
 :returns: The ACL array of the given node and its
 :class:`~kazoo.protocol.states.ZnodeStat`.
 :rtype: tuple of (:class:`~kazoo.security.ACL` list,
 :class:`~kazoo.protocol.states.ZnodeStat`)
 :raises:
 :exc:`~kazoo.exceptions.NoNodeError` if the node doesn't
 exist.

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code

 .. versionadded:: 0.5

 """
 return self.get_acls_async(path).get()

[docs] def get_acls_async(self, path):
 """Return the ACL and stat of the node of the given path. Takes
 the same arguments as :meth:`get_acls`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")

 async_result = self.handler.async_result()
 self._call(GetACL(_prefix_root(self.chroot, path)), async_result)
 return async_result

[docs] def set_acls(self, path, acls, version=-1):
 """Set the ACL for the node of the given path.

 Set the ACL for the node of the given path if such a node
 exists and the given version matches the version of the node.

 :param path: Path for the node.
 :param acls: List of :class:`~kazoo.security.ACL` objects to
 set.
 :param version: The expected node version that must match.
 :returns: The stat of the node.
 :raises:
 :exc:`~kazoo.exceptions.BadVersionError` if version doesn't
 match.

 :exc:`~kazoo.exceptions.NoNodeError` if the node doesn't
 exist.

 :exc:`~kazoo.exceptions.InvalidACLError` if the ACL is
 invalid.

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 .. versionadded:: 0.5

 """
 return self.set_acls_async(path, acls, version).get()

[docs] def set_acls_async(self, path, acls, version=-1):
 """Set the ACL for the node of the given path. Takes the same
 arguments as :meth:`set_acls`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if isinstance(acls, ACL) or not isinstance(acls, (tuple, list)):
 raise TypeError("acl must be a tuple/list of ACL's")
 if not isinstance(version, int):
 raise TypeError("version must be an int")

 async_result = self.handler.async_result()
 self._call(SetACL(_prefix_root(self.chroot, path), acls, version),
 async_result)
 return async_result

[docs] def set(self, path, value, version=-1):
 """Set the value of a node.

 If the version of the node being updated is newer than the
 supplied version (and the supplied version is not -1), a
 BadVersionError will be raised.

 This operation, if successful, will trigger all the watches on
 the node of the given path left by :meth:`get` API calls.

 The maximum allowable size of the value is 1 MB. Values larger
 than this will cause a ZookeeperError to be raised.

 :param path: Path of node.
 :param value: New data value.
 :param version: Version of node being updated, or -1.
 :returns: Updated :class:`~kazoo.protocol.states.ZnodeStat` of
 the node.

 :raises:
 :exc:`~kazoo.exceptions.BadVersionError` if version doesn't
 match.

 :exc:`~kazoo.exceptions.NoNodeError` if the node doesn't
 exist.

 :exc:`~kazoo.exceptions.ZookeeperError` if the provided
 value is too large.

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 """
 return self.set_async(path, value, version).get()

[docs] def set_async(self, path, value, version=-1):
 """Set the value of a node. Takes the same arguments as
 :meth:`set`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if not isinstance(value, bytes):
 raise TypeError("value must be a byte string")
 if not isinstance(version, int):
 raise TypeError("version must be an int")

 async_result = self.handler.async_result()
 self._call(SetData(_prefix_root(self.chroot, path), value, version),
 async_result)
 return async_result

[docs] def transaction(self):
 """Create and return a :class:`TransactionRequest` object

 Creates a :class:`TransactionRequest` object. A Transaction can
 consist of multiple operations which can be committed as a
 single atomic unit. Either all of the operations will succeed
 or none of them.

 :returns: A TransactionRequest.
 :rtype: :class:`TransactionRequest`

 .. versionadded:: 0.6
 Requires Zookeeper 3.4+

 """
 return TransactionRequest(self)

[docs] def delete(self, path, version=-1, recursive=False):
 """Delete a node.

 The call will succeed if such a node exists, and the given
 version matches the node's version (if the given version is -1,
 the default, it matches any node's versions).

 This operation, if successful, will trigger all the watches on
 the node of the given path left by `exists` API calls, and the
 watches on the parent node left by `get_children` API calls.

 :param path: Path of node to delete.
 :param version: Version of node to delete, or -1 for any.
 :param recursive: Recursively delete node and all its children,
 defaults to False.
 :type recursive: bool

 :raises:
 :exc:`~kazoo.exceptions.BadVersionError` if version doesn't
 match.

 :exc:`~kazoo.exceptions.NoNodeError` if the node doesn't
 exist.

 :exc:`~kazoo.exceptions.NotEmptyError` if the node has
 children.

 :exc:`~kazoo.exceptions.ZookeeperError` if the server
 returns a non-zero error code.

 """
 if not isinstance(recursive, bool):
 raise TypeError("recursive must be a bool")

 if recursive:
 return self._delete_recursive(path)
 else:
 return self.delete_async(path, version).get()

[docs] def delete_async(self, path, version=-1):
 """Asynchronously delete a node. Takes the same arguments as
 :meth:`delete`, with the exception of `recursive`.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if not isinstance(version, int):
 raise TypeError("version must be an int")
 async_result = self.handler.async_result()
 self._call(Delete(_prefix_root(self.chroot, path), version),
 async_result)
 return async_result

 def _delete_recursive(self, path):
 try:
 children = self.get_children(path)
 except NoNodeError:
 return True

 if children:
 for child in children:
 if path == "/":
 child_path = path + child
 else:
 child_path = path + "/" + child

 self._delete_recursive(child_path)
 try:
 self.delete(path)
 except NoNodeError: # pragma: nocover
 pass

[docs]class TransactionRequest(object):
 """A Zookeeper Transaction Request

 A Transaction provides a builder object that can be used to
 construct and commit an atomic set of operations. The transaction
 must be committed before its sent.

 Transactions are not thread-safe and should not be accessed from
 multiple threads at once.

 .. versionadded:: 0.6
 Requires Zookeeper 3.4+

 """
 def __init__(self, client):
 self.client = client
 self.operations = []
 self.committed = False

[docs] def create(self, path, value=b"", acl=None, ephemeral=False,
 sequence=False):
 """Add a create ZNode to the transaction. Takes the same
 arguments as :meth:`KazooClient.create`, with the exception
 of `makepath`.

 :returns: None

 """
 if acl is None and self.client.default_acl:
 acl = self.client.default_acl

 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if acl and not isinstance(acl, (tuple, list)):
 raise TypeError("acl must be a tuple/list of ACL's")
 if not isinstance(value, bytes):
 raise TypeError("value must be a byte string")
 if not isinstance(ephemeral, bool):
 raise TypeError("ephemeral must be a bool")
 if not isinstance(sequence, bool):
 raise TypeError("sequence must be a bool")

 flags = 0
 if ephemeral:
 flags |= 1
 if sequence:
 flags |= 2
 if acl is None:
 acl = OPEN_ACL_UNSAFE

 self._add(Create(_prefix_root(self.client.chroot, path), value, acl,
 flags), None)

[docs] def delete(self, path, version=-1):
 """Add a delete ZNode to the transaction. Takes the same
 arguments as :meth:`KazooClient.delete`, with the exception of
 `recursive`.

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if not isinstance(version, int):
 raise TypeError("version must be an int")
 self._add(Delete(_prefix_root(self.client.chroot, path), version))

[docs] def set_data(self, path, value, version=-1):
 """Add a set ZNode value to the transaction. Takes the same
 arguments as :meth:`KazooClient.set`.

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if not isinstance(value, bytes):
 raise TypeError("value must be a byte string")
 if not isinstance(version, int):
 raise TypeError("version must be an int")
 self._add(SetData(_prefix_root(self.client.chroot, path), value,
 version))

[docs] def check(self, path, version):
 """Add a Check Version to the transaction.

 This command will fail and abort a transaction if the path
 does not match the specified version.

 """
 if not isinstance(path, basestring):
 raise TypeError("path must be a string")
 if not isinstance(version, int):
 raise TypeError("version must be an int")
 self._add(CheckVersion(_prefix_root(self.client.chroot, path),
 version))

[docs] def commit_async(self):
 """Commit the transaction asynchronously.

 :rtype: :class:`~kazoo.interfaces.IAsyncResult`

 """
 self._check_tx_state()
 self.committed = True
 async_object = self.client.handler.async_result()
 self.client._call(Transaction(self.operations), async_object)
 return async_object

[docs] def commit(self):
 """Commit the transaction.

 :returns: A list of the results for each operation in the
 transaction.

 """
 return self.commit_async().get()

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_value, exc_tb):
 """Commit and cleanup accumulated transaction data."""
 if not exc_type:
 self.commit()

 def _check_tx_state(self):
 if self.committed:
 raise ValueError('Transaction already committed')

 def _add(self, request, post_processor=None):
 self._check_tx_state()
 self.client.logger.debug('Added %r to %r', request, self)
 self.operations.append(request)

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/recipe/barrier.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.barrier

"""Zookeeper Barriers"""
import os
import socket
import uuid

from kazoo.protocol.states import EventType
from kazoo.exceptions import KazooException
from kazoo.exceptions import NoNodeError
from kazoo.exceptions import NodeExistsError

[docs]class Barrier(object):
 """Kazoo Barrier

 Implements a barrier to block processing of a set of nodes until
 a condition is met at which point the nodes will be allowed to
 proceed. The barrier is in place if its node exists.

 .. warning::

 The :meth:`wait` function does not handle connection loss and
 may raise :exc:`~kazoo.exceptions.ConnectionLossException` if
 the connection is lost while waiting.

 """
[docs] def __init__(self, client, path):
 """Create a Kazoo Barrier

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The barrier path to use.

 """
 self.client = client
 self.path = path

[docs] def create(self):
 """Establish the barrier if it doesn't exist already"""
 self.client.retry(self.client.ensure_path, self.path)

[docs] def remove(self):
 """Remove the barrier

 :returns: Whether the barrier actually needed to be removed.
 :rtype: bool

 """
 try:
 self.client.retry(self.client.delete, self.path)
 return True
 except NoNodeError:
 return False

[docs] def wait(self, timeout=None):
 """Wait on the barrier to be cleared

 :returns: True if the barrier has been cleared, otherwise
 False.
 :rtype: bool

 """
 cleared = self.client.handler.event_object()

 def wait_for_clear(event):
 if event.type == EventType.DELETED:
 cleared.set()

 exists = self.client.exists(self.path, watch=wait_for_clear)
 if not exists:
 return True

 cleared.wait(timeout)
 return cleared.is_set()

[docs]class DoubleBarrier(object):
 """Kazoo Double Barrier

 Double barriers are used to synchronize the beginning and end of
 a distributed task. The barrier blocks when entering it until all
 the members have joined, and blocks when leaving until all the
 members have left.

 .. note::

 You should register a listener for session loss as the process
 will no longer be part of the barrier once the session is
 gone. Connection losses will be retried with the default retry
 policy.

 """
[docs] def __init__(self, client, path, num_clients, identifier=None):
 """Create a Double Barrier

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The barrier path to use.
 :param num_clients: How many clients must enter the barrier to
 proceed.
 :type num_clients: int
 :param identifier: An identifier to use for this member of the
 barrier when participating. Defaults to the
 hostname + process id.

 """
 self.client = client
 self.path = path
 self.num_clients = num_clients
 self._identifier = identifier or '%s-%s' % (
 socket.getfqdn(), os.getpid())
 self.participating = False
 self.assured_path = False
 self.node_name = uuid.uuid4().hex
 self.create_path = self.path + "/" + self.node_name

[docs] def enter(self):
 """Enter the barrier, blocks until all nodes have entered"""
 try:
 self.client.retry(self._inner_enter)
 self.participating = True
 except KazooException:
 # We failed to enter, best effort cleanup
 self._best_effort_cleanup()
 self.participating = False

 def _inner_enter(self):
 # make sure our barrier parent node exists
 if not self.assured_path:
 self.client.ensure_path(self.path)
 self.assured_path = True

 ready = self.client.handler.event_object()

 try:
 self.client.create(self.create_path,
 self._identifier.encode('utf-8'), ephemeral=True)
 except NodeExistsError:
 pass

 def created(event):
 if event.type == EventType.CREATED:
 ready.set()

 self.client.exists(self.path + '/' + 'ready', watch=created)

 children = self.client.get_children(self.path)

 if len(children) < self.num_clients:
 ready.wait()
 else:
 self.client.ensure_path(self.path + '/ready')
 return True

[docs] def leave(self):
 """Leave the barrier, blocks until all nodes have left"""
 try:
 self.client.retry(self._inner_leave)
 except KazooException: # pragma: nocover
 # Failed to cleanly leave
 self._best_effort_cleanup()
 self.participating = False

 def _inner_leave(self):
 # Delete the ready node if its around
 try:
 self.client.delete(self.path + '/ready')
 except NoNodeError:
 pass

 while True:
 children = self.client.get_children(self.path)
 if not children:
 return True

 if len(children) == 1 and children[0] == self.node_name:
 self.client.delete(self.create_path)
 return True

 children.sort()

 ready = self.client.handler.event_object()

 def deleted(event):
 if event.type == EventType.DELETED:
 ready.set()

 if self.node_name == children[0]:
 # We're first, wait on the highest to leave
 if not self.client.exists(self.path + '/' + children[-1],
 watch=deleted):
 continue

 ready.wait()
 continue

 # Delete our node
 self.client.delete(self.create_path)

 # Wait on the first
 if not self.client.exists(self.path + '/' + children[0],
 watch=deleted):
 continue

 # Wait for the lowest to be deleted
 ready.wait()

 def _best_effort_cleanup(self):
 try:
 self.client.retry(self.client.delete, self.create_path)
 except NoNodeError:
 pass

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/recipe/party.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.party

"""Party

A Zookeeper pool of party members. The :class:`Party` object can be
used for determining members of a party.

"""
import uuid

from kazoo.exceptions import NodeExistsError, NoNodeError

class BaseParty(object):
 """Base implementation of a party."""
 def __init__(self, client, path, identifier=None):
 """
 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The party path to use.
 :param identifier: An identifier to use for this member of the
 party when participating.

 """
 self.client = client
 self.path = path
 self.data = str(identifier or "").encode('utf-8')
 self.ensured_path = False
 self.participating = False

 def _ensure_parent(self):
 if not self.ensured_path:
 # make sure our parent node exists
 self.client.ensure_path(self.path)
 self.ensured_path = True

 def join(self):
 """Join the party"""
 return self.client.retry(self._inner_join)

 def _inner_join(self):
 self._ensure_parent()
 try:
 self.client.create(self.create_path, self.data, ephemeral=True)
 self.participating = True
 except NodeExistsError:
 # node was already created, perhaps we are recovering from a
 # suspended connection
 self.participating = True

 def leave(self):
 """Leave the party"""
 self.participating = False
 return self.client.retry(self._inner_leave)

 def _inner_leave(self):
 try:
 self.client.delete(self.create_path)
 except NoNodeError:
 return False
 return True

 def __len__(self):
 """Return a count of participating clients"""
 self._ensure_parent()
 return len(self._get_children())

 def _get_children(self):
 return self.client.retry(self.client.get_children, self.path)

[docs]class Party(BaseParty):
 """Simple pool of participating processes"""
 _NODE_NAME = "__party__"

[docs] def __init__(self, client, path, identifier=None):
 BaseParty.__init__(self, client, path, identifier=identifier)
 self.node = uuid.uuid4().hex + self._NODE_NAME
 self.create_path = self.path + "/" + self.node

[docs] def __iter__(self):
 """Get a list of participating clients' data values"""
 self._ensure_parent()
 children = self._get_children()
 for child in children:
 try:
 d, _ = self.client.retry(self.client.get, self.path +
 "/" + child)
 yield d.decode('utf-8')
 except NoNodeError: # pragma: nocover
 pass

 def _get_children(self):
 children = BaseParty._get_children(self)
 return [c for c in children if self._NODE_NAME in c]

[docs]class ShallowParty(BaseParty):
 """Simple shallow pool of participating processes

 This differs from the :class:`Party` as the identifier is used in
 the name of the party node itself, rather than the data. This
 places some restrictions on the length as it must be a valid
 Zookeeper node (an alphanumeric string), but reduces the overhead
 of getting a list of participants to a single Zookeeper call.

 """
[docs] def __init__(self, client, path, identifier=None):
 BaseParty.__init__(self, client, path, identifier=identifier)
 self.node = '-'.join([uuid.uuid4().hex, self.data.decode('utf-8')])
 self.create_path = self.path + "/" + self.node

[docs] def __iter__(self):
 """Get a list of participating clients' identifiers"""
 self._ensure_parent()
 children = self._get_children()
 for child in children:
 yield child[child.find('-') + 1:]

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/ajax-loader.gif

_modules/kazoo/security.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.security

"""Kazoo Security"""
from base64 import b64encode
from collections import namedtuple
import hashlib

Represents a Zookeeper ID and ACL object
Id = namedtuple('Id', 'scheme id')

[docs]class ACL(namedtuple('ACL', 'perms id')):
 """An ACL for a Zookeeper Node

 An ACL object is created by using an :class:`Id` object along with
 a :class:`Permissions` setting. For convenience,
 :meth:`make_digest_acl` should be used to create an ACL object with
 the desired scheme, id, and permissions.

 """
 @property
 def acl_list(self):
 perms = []
 if self.perms & Permissions.ALL == Permissions.ALL:
 perms.append('ALL')
 return perms
 if self.perms & Permissions.READ == Permissions.READ:
 perms.append('READ')
 if self.perms & Permissions.WRITE == Permissions.WRITE:
 perms.append('WRITE')
 if self.perms & Permissions.CREATE == Permissions.CREATE:
 perms.append('CREATE')
 if self.perms & Permissions.DELETE == Permissions.DELETE:
 perms.append('DELETE')
 if self.perms & Permissions.ADMIN == Permissions.ADMIN:
 perms.append('ADMIN')
 return perms

 def __repr__(self):
 return 'ACL(perms=%r, acl_list=%s, id=%r)' % (
 self.perms, self.acl_list, self.id)

class Permissions(object):
 READ = 1
 WRITE = 2
 CREATE = 4
 DELETE = 8
 ADMIN = 16
 ALL = 31

Shortcuts for common Ids
ANYONE_ID_UNSAFE = Id('world', 'anyone')
AUTH_IDS = Id('auth', '')

Shortcuts for common ACLs
OPEN_ACL_UNSAFE = [ACL(Permissions.ALL, ANYONE_ID_UNSAFE)]
CREATOR_ALL_ACL = [ACL(Permissions.ALL, AUTH_IDS)]
READ_ACL_UNSAFE = [ACL(Permissions.READ, ANYONE_ID_UNSAFE)]

[docs]def make_digest_acl_credential(username, password):
 """Create a SHA1 digest credential"""
 credential = username.encode('utf-8') + b":" + password.encode('utf-8')
 cred_hash = b64encode(hashlib.sha1(credential).digest()).strip()
 return username + ":" + cred_hash.decode('utf-8')

[docs]def make_acl(scheme, credential, read=False, write=False,
 create=False, delete=False, admin=False, all=False):
 """Given a scheme and credential, return an :class:`ACL` object
 appropriate for use with Kazoo.

 :param scheme: The scheme to use. I.e. `digest`.
 :param credential:
 A colon separated username, password. The password should be
 hashed with the `scheme` specified. The
 :meth:`make_digest_acl_credential` method will create and
 return a credential appropriate for use with the `digest`
 scheme.
 :param write: Write permission.
 :type write: bool
 :param create: Create permission.
 :type create: bool
 :param delete: Delete permission.
 :type delete: bool
 :param admin: Admin permission.
 :type admin: bool
 :param all: All permissions.
 :type all: bool

 :rtype: :class:`ACL`

 """
 if all:
 permissions = Permissions.ALL
 else:
 permissions = 0
 if read:
 permissions |= Permissions.READ
 if write:
 permissions |= Permissions.WRITE
 if create:
 permissions |= Permissions.CREATE
 if delete:
 permissions |= Permissions.DELETE
 if admin:
 permissions |= Permissions.ADMIN
 return ACL(permissions, Id(scheme, credential))

[docs]def make_digest_acl(username, password, read=False, write=False,
 create=False, delete=False, admin=False, all=False):
 """Create a digest ACL for Zookeeper with the given permissions

 This method combines :meth:`make_digest_acl_credential` and
 :meth:`make_acl` to create an :class:`ACL` object appropriate for
 use with Kazoo's ACL methods.

 :param username: Username to use for the ACL.
 :param password: A plain-text password to hash.
 :param write: Write permission.
 :type write: bool
 :param create: Create permission.
 :type create: bool
 :param delete: Delete permission.
 :type delete: bool
 :param admin: Admin permission.
 :type admin: bool
 :param all: All permissions.
 :type all: bool

 :rtype: :class:`ACL`

 """
 cred = make_digest_acl_credential(username, password)
 return make_acl("digest", cred, read=read, write=write, create=create,
 delete=delete, admin=admin, all=all)

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/file.png

_modules/kazoo/handlers/threading.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.handlers.threading

"""A threading based handler.

The :class:`SequentialThreadingHandler` is intended for regular Python
environments that use threads.

.. warning::

 Do not use :class:`SequentialThreadingHandler` with applications
 using asynchronous event loops (like gevent). Use the
 :class:`~kazoo.handlers.gevent.SequentialGeventHandler` instead.

"""
from __future__ import absolute_import

import atexit
import logging
import select
import socket
import threading
import time

try:
 import Queue
except ImportError: # pragma: nocover
 import queue as Queue

from zope.interface import implementer

from kazoo.handlers.utils import create_tcp_socket, create_tcp_connection
from kazoo.interfaces import IAsyncResult
from kazoo.interfaces import IHandler

sentinel objects
_NONE = object()
_STOP = object()

log = logging.getLogger(__name__)

[docs]class TimeoutError(Exception):
 pass

@implementer(IAsyncResult)
[docs]class AsyncResult(object):
 """A one-time event that stores a value or an exception"""
 def __init__(self, handler):
 self._handler = handler
 self.value = None
 self._exception = _NONE
 self._condition = threading.Condition()
 self._callbacks = []

[docs] def ready(self):
 """Return true if and only if it holds a value or an
 exception"""
 return self._exception is not _NONE

[docs] def successful(self):
 """Return true if and only if it is ready and holds a value"""
 return self._exception is None

 @property
 def exception(self):
 if self._exception is not _NONE:
 return self._exception

[docs] def set(self, value=None):
 """Store the value. Wake up the waiters."""
 with self._condition:
 self.value = value
 self._exception = None

 for callback in self._callbacks:
 self._handler.completion_queue.put(
 lambda: callback(self)
)
 self._condition.notify_all()

[docs] def set_exception(self, exception):
 """Store the exception. Wake up the waiters."""
 with self._condition:
 self._exception = exception

 for callback in self._callbacks:
 self._handler.completion_queue.put(
 lambda: callback(self)
)
 self._condition.notify_all()

[docs] def get(self, block=True, timeout=None):
 """Return the stored value or raise the exception.

 If there is no value raises TimeoutError.

 """
 with self._condition:
 if self._exception is not _NONE:
 if self._exception is None:
 return self.value
 raise self._exception
 elif block:
 self._condition.wait(timeout)
 if self._exception is not _NONE:
 if self._exception is None:
 return self.value
 raise self._exception

 # if we get to this point we timeout
 raise TimeoutError()

[docs] def get_nowait(self):
 """Return the value or raise the exception without blocking.

 If nothing is available, raises TimeoutError

 """
 return self.get(block=False)

[docs] def wait(self, timeout=None):
 """Block until the instance is ready."""
 with self._condition:
 self._condition.wait(timeout)
 return self._exception is not _NONE

[docs] def rawlink(self, callback):
 """Register a callback to call when a value or an exception is
 set"""
 with self._condition:
 # Are we already set? Dispatch it now
 if self.ready():
 self._handler.completion_queue.put(
 lambda: callback(self)
)
 return

 if callback not in self._callbacks:
 self._callbacks.append(callback)

[docs] def unlink(self, callback):
 """Remove the callback set by :meth:`rawlink`"""
 with self._condition:
 if self.ready():
 # Already triggered, ignore
 return

 if callback in self._callbacks:
 self._callbacks.remove(callback)

@implementer(IHandler)
[docs]class SequentialThreadingHandler(object):
 """Threading handler for sequentially executing callbacks.

 This handler executes callbacks in a sequential manner. A queue is
 created for each of the callback events, so that each type of event
 has its callback type run sequentially. These are split into two
 queues, one for watch events and one for async result completion
 callbacks.

 Each queue type has a thread worker that pulls the callback event
 off the queue and runs it in the order the client sees it.

 This split helps ensure that watch callbacks won't block session
 re-establishment should the connection be lost during a Zookeeper
 client call.

 Watch and completion callbacks should avoid blocking behavior as
 the next callback of that type won't be run until it completes. If
 you need to block, spawn a new thread and return immediately so
 callbacks can proceed.

 .. note::

 Completion callbacks can block to wait on Zookeeper calls, but
 no other completion callbacks will execute until the callback
 returns.

 """
 name = "sequential_threading_handler"
 timeout_exception = TimeoutError
 sleep_func = staticmethod(time.sleep)

 def __init__(self):
 """Create a :class:`SequentialThreadingHandler` instance"""
 self.callback_queue = Queue.Queue()
 self.completion_queue = Queue.Queue()
 self._running = False
 self._state_change = threading.Lock()
 self._workers = []
 atexit.register(self.stop)

 def _create_thread_worker(self, queue):
 def thread_worker(): # pragma: nocover
 while True:
 try:
 func = queue.get()
 try:
 if func is _STOP:
 break
 func()
 except Exception:
 log.exception("Exception in worker queue thread")
 finally:
 queue.task_done()
 except Queue.Empty:
 continue
 t = threading.Thread(target=thread_worker)

 # Even though these should be joined, it's possible stop might
 # not issue in time so we set them to daemon to let the program
 # exit anyways
 t.daemon = True
 t.start()
 return t

[docs] def start(self):
 """Start the worker threads."""
 with self._state_change:
 if self._running:
 return

 # Spawn our worker threads, we have
 # - A callback worker for watch events to be called
 # - A completion worker for completion events to be called
 for queue in (self.completion_queue, self.callback_queue):
 w = self._create_thread_worker(queue)
 self._workers.append(w)
 self._running = True

[docs] def stop(self):
 """Stop the worker threads and empty all queues."""
 with self._state_change:
 if not self._running:
 return

 self._running = False

 for queue in (self.completion_queue, self.callback_queue):
 queue.put(_STOP)

 self._workers.reverse()
 while self._workers:
 worker = self._workers.pop()
 worker.join()

 # Clear the queues
 self.callback_queue = Queue.Queue()
 self.completion_queue = Queue.Queue()

 def select(self, *args, **kwargs):
 return select.select(*args, **kwargs)

 def socket(self):
 return create_tcp_socket(socket)

 def create_connection(self, *args, **kwargs):
 return create_tcp_connection(socket, *args, **kwargs)

[docs] def event_object(self):
 """Create an appropriate Event object"""
 return threading.Event()

[docs] def lock_object(self):
 """Create a lock object"""
 return threading.Lock()

[docs] def rlock_object(self):
 """Create an appropriate RLock object"""
 return threading.RLock()

[docs] def async_result(self):
 """Create a :class:`AsyncResult` instance"""
 return AsyncResult(self)

 def spawn(self, func, *args, **kwargs):
 t = threading.Thread(target=func, args=args, kwargs=kwargs)
 t.daemon = True
 t.start()
 return t

[docs] def dispatch_callback(self, callback):
 """Dispatch to the callback object

 The callback is put on separate queues to run depending on the
 type as documented for the :class:`SequentialThreadingHandler`.

 """
 self.callback_queue.put(lambda: callback.func(*callback.args))

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/protocol/states.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.protocol.states

"""Kazoo State and Event objects"""
from collections import namedtuple

[docs]class KazooState(object):
 """High level connection state values

 States inspired by Netflix Curator.

 .. attribute:: SUSPENDED

 The connection has been lost but may be recovered. We should
 operate in a "safe mode" until then. When the connection is
 resumed, it may be discovered that the session expired. A
 client should not assume that locks are valid during this
 time.

 .. attribute:: CONNECTED

 The connection is alive and well.

 .. attribute:: LOST

 The connection has been confirmed dead. Any ephemeral nodes
 will need to be recreated upon re-establishing a connection.
 If locks were acquired or recipes using ephemeral nodes are in
 use, they can be considered lost as well.

 """
 SUSPENDED = "SUSPENDED"
 CONNECTED = "CONNECTED"
 LOST = "LOST"

[docs]class KeeperState(object):
 """Zookeeper State

 Represents the Zookeeper state. Watch functions will receive a
 :class:`KeeperState` attribute as their state argument.

 .. attribute:: AUTH_FAILED

 Authentication has failed, this is an unrecoverable error.

 .. attribute:: CONNECTED

 Zookeeper is connected.

 .. attribute:: CONNECTED_RO

 Zookeeper is connected in read-only state.

 .. attribute:: CONNECTING

 Zookeeper is currently attempting to establish a connection.

 .. attribute:: EXPIRED_SESSION

 The prior session was invalid, all prior ephemeral nodes are
 gone.

 """
 AUTH_FAILED = 'AUTH_FAILED'
 CONNECTED = 'CONNECTED'
 CONNECTED_RO = 'CONNECTED_RO'
 CONNECTING = 'CONNECTING'
 CLOSED = 'CLOSED'
 EXPIRED_SESSION = 'EXPIRED_SESSION'

[docs]class EventType(object):
 """Zookeeper Event

 Represents a Zookeeper event. Events trigger watch functions which
 will receive a :class:`EventType` attribute as their event
 argument.

 .. attribute:: CREATED

 A node has been created.

 .. attribute:: DELETED

 A node has been deleted.

 .. attribute:: CHANGED

 The data for a node has changed.

 .. attribute:: CHILD

 The children under a node have changed (a child was added or
 removed). This event does not indicate the data for a child
 node has changed, which must have its own watch established.

 """
 CREATED = 'CREATED'
 DELETED = 'DELETED'
 CHANGED = 'CHANGED'
 CHILD = 'CHILD'

EVENT_TYPE_MAP = {
 1: EventType.CREATED,
 2: EventType.DELETED,
 3: EventType.CHANGED,
 4: EventType.CHILD
}

[docs]class WatchedEvent(namedtuple('WatchedEvent', ('type', 'state', 'path'))):
 """A change on ZooKeeper that a Watcher is able to respond to.

 The :class:`WatchedEvent` includes exactly what happened, the
 current state of ZooKeeper, and the path of the node that was
 involved in the event. An instance of :class:`WatchedEvent` will be
 passed to registered watch functions.

 .. attribute:: type

 A :class:`EventType` attribute indicating the event type.

 .. attribute:: state

 A :class:`KeeperState` attribute indicating the Zookeeper
 state.

 .. attribute:: path

 The path of the node for the watch event.

 """

[docs]class Callback(namedtuple('Callback', ('type', 'func', 'args'))):
 """A callback that is handed to a handler for dispatch

 :param type: Type of the callback, currently is only 'watch'
 :param func: Callback function
 :param args: Argument list for the callback function

 """

[docs]class ZnodeStat(namedtuple('ZnodeStat', 'czxid mzxid ctime mtime version'
 ' cversion aversion ephemeralOwner dataLength'
 ' numChildren pzxid')):
 """A ZnodeStat structure with convenience properties

 When getting the value of a node from Zookeeper, the properties for
 the node known as a "Stat structure" will be retrieved. The
 :class:`ZnodeStat` object provides access to the standard Stat
 properties and additional properties that are more readable and use
 Python time semantics (seconds since epoch instead of ms).

 .. note::

 The original Zookeeper Stat name is in parens next to the name
 when it differs from the convenience attribute. These are **not
 functions**, just attributes.

 .. attribute:: creation_transaction_id (czxid)

 The transaction id of the change that caused this znode to be
 created.

 .. attribute:: last_modified_transaction_id (mzxid)

 The transaction id of the change that last modified this znode.

 .. attribute:: created (ctime)

 The time in seconds from epoch when this node was created.
 (ctime is in milliseconds)

 .. attribute:: last_modified (mtime)

 The time in seconds from epoch when this znode was last
 modified. (mtime is in milliseconds)

 .. attribute:: version

 The number of changes to the data of this znode.

 .. attribute:: acl_version (aversion)

 The number of changes to the ACL of this znode.

 .. attribute:: owner_session_id (ephemeralOwner)

 The session id of the owner of this znode if the znode is an
 ephemeral node. If it is not an ephemeral node, it will be
 `None`. (ephemeralOwner will be 0 if it is not ephemeral)

 .. attribute:: data_length (dataLength)

 The length of the data field of this znode.

 .. attribute:: children_count (numChildren)

 The number of children of this znode.

 """
 @property
[docs] def acl_version(self):
 return self.aversion

 @property
 def children_version(self):
 return self.cversion

 @property
[docs] def created(self):
 return self.ctime / 1000.0

 @property
[docs] def last_modified(self):
 return self.mtime / 1000.0

 @property
[docs] def owner_session_id(self):
 return self.ephemeralOwner or None

 @property
[docs] def creation_transaction_id(self):
 return self.czxid

 @property
[docs] def last_modified_transaction_id(self):
 return self.mzxid

 @property
[docs] def data_length(self):
 return self.dataLength

 @property
[docs] def children_count(self):
 return self.numChildren

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/down-pressed.png

_modules/kazoo/interfaces.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.interfaces

"""Kazoo Interfaces"""
from zope.interface import (
 Attribute,
 Interface,
)

public API

[docs]class IHandler(Interface):
 """A Callback Handler for Zookeeper completion and watch callbacks

 This object must implement several methods responsible for
 determining how completion / watch callbacks are handled as well as
 the method for calling :class:`IAsyncResult` callback functions.

 These functions are used to abstract differences between a Python
 threading environment and asynchronous single-threaded environments
 like gevent. The minimum functionality needed for Kazoo to handle
 these differences is encompassed in this interface.

 The Handler should document how callbacks are called for:

 * Zookeeper completion events
 * Zookeeper watch events

 """
 name = Attribute(
 """Human readable name of the Handler interface""")

 timeout_exception = Attribute(
 """Exception class that should be thrown and captured if a
 result is not available within the given time""")

 sleep_func = Attribute(
 """Appropriate sleep function that can be called with a single
 argument and sleep.""")

[docs] def start():
 """Start the handler, used for setting up the handler."""

[docs] def stop():
 """Stop the handler. Should block until the handler is safely
 stopped."""

[docs] def select():
 """A select method that implements Python's select.select
 API"""

[docs] def socket():
 """A socket method that implements Python's socket.socket
 API"""

[docs] def create_connection():
 """A socket method that implements Python's
 socket.create_connection API"""

[docs] def event_object():
 """Return an appropriate object that implements Python's
 threading.Event API"""

[docs] def lock_object():
 """Return an appropriate object that implements Python's
 threading.Lock API"""

[docs] def rlock_object():
 """Return an appropriate object that implements Python's
 threading.RLock API"""

[docs] def async_result():
 """Return an instance that conforms to the
 :class:`~IAsyncResult` interface appropriate for this
 handler"""

[docs] def spawn(func, *args, **kwargs):
 """Spawn a function to run asynchronously

 :param args: args to call the function with.
 :param kwargs: keyword args to call the function with.

 This method should return immediately and execute the function
 with the provided args and kwargs in an asynchronous manner.

 """

[docs] def dispatch_callback(callback):
 """Dispatch to the callback object

 :param callback: A :class:`~kazoo.protocol.states.Callback`
 object to be called.

 """

[docs]class IAsyncResult(Interface):
 """An Async Result object that can be queried for a value that has
 been set asynchronously

 This object is modeled on the ``gevent`` AsyncResult object.

 The implementation must account for the fact that the :meth:`set`
 and :meth:`set_exception` methods will be called from within the
 Zookeeper thread which may require extra care under asynchronous
 environments.

 """
 value = Attribute(
 """Holds the value passed to :meth:`set` if :meth:`set` was
 called. Otherwise `None`""")

 exception = Attribute(
 """Holds the exception instance passed to :meth:`set_exception`
 if :meth:`set_exception` was called. Otherwise `None`""")

[docs] def ready():
 """Return `True` if and only if it holds a value or an
 exception"""

[docs] def successful():
 """Return `True` if and only if it is ready and holds a
 value"""

[docs] def set(value=None):
 """Store the value. Wake up the waiters.

 :param value: Value to store as the result.

 Any waiters blocking on :meth:`get` or :meth:`wait` are woken
 up. Sequential calls to :meth:`wait` and :meth:`get` will not
 block at all."""

[docs] def set_exception(exception):
 """Store the exception. Wake up the waiters.

 :param exception: Exception to raise when fetching the value.

 Any waiters blocking on :meth:`get` or :meth:`wait` are woken
 up. Sequential calls to :meth:`wait` and :meth:`get` will not
 block at all."""

[docs] def get(block=True, timeout=None):
 """Return the stored value or raise the exception

 :param block: Whether this method should block or return
 immediately.
 :type block: bool
 :param timeout: How long to wait for a value when `block` is
 `True`.
 :type timeout: float

 If this instance already holds a value / an exception, return /
 raise it immediately. Otherwise, block until :meth:`set` or
 :meth:`set_exception` has been called or until the optional
 timeout occurs."""

[docs] def get_nowait():
 """Return the value or raise the exception without blocking.

 If nothing is available, raise the Timeout exception class on
 the associated :class:`IHandler` interface."""

[docs] def wait(timeout=None):
 """Block until the instance is ready.

 :param timeout: How long to wait for a value when `block` is
 `True`.
 :type timeout: float

 If this instance already holds a value / an exception, return /
 raise it immediately. Otherwise, block until :meth:`set` or
 :meth:`set_exception` has been called or until the optional
 timeout occurs."""

[docs] def rawlink(callback):
 """Register a callback to call when a value or an exception is
 set

 :param callback:
 A callback function to call after :meth:`set` or
 :meth:`set_exception` has been called. This function will
 be passed a single argument, this instance.
 :type callback: func

 """

[docs] def unlink(callback):
 """Remove the callback set by :meth:`rawlink`

 :param callback: A callback function to remove.
 :type callback: func

 """

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/comment-bright.png

_modules/kazoo/recipe/election.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.election

"""ZooKeeper Leader Elections"""
from kazoo.exceptions import CancelledError

[docs]class Election(object):
 """Kazoo Basic Leader Election

 Example usage with a :class:`~kazoo.client.KazooClient` instance::

 zk = KazooClient()
 election = zk.Election("/electionpath", "my-identifier")

 # blocks until the election is won, then calls
 # my_leader_function()
 election.run(my_leader_function)

 """
[docs] def __init__(self, client, path, identifier=None):
 """Create a Kazoo Leader Election

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The election path to use.
 :param identifier: Name to use for this lock contender. This
 can be useful for querying to see who the
 current lock contenders are.

 """
 self.lock = client.Lock(path, identifier)

[docs] def run(self, func, *args, **kwargs):
 """Contend for the leadership

 This call will block until either this contender is cancelled
 or this contender wins the election and the provided leadership
 function subsequently returns or fails.

 :param func: A function to be called if/when the election is
 won.
 :param args: Arguments to leadership function.
 :param kwargs: Keyword arguments to leadership function.

 """
 if not callable(func):
 raise ValueError("leader function is not callable")

 try:
 with self.lock:
 func(*args, **kwargs)

 except CancelledError:
 pass

[docs] def cancel(self):
 """Cancel participation in the election

 .. note::

 If this contender has already been elected leader, this
 method will not interrupt the leadership function.

 """
 self.lock.cancel()

[docs] def contenders(self):
 """Return an ordered list of the current contenders in the
 election

 .. note::

 If the contenders did not set an identifier, it will appear
 as a blank string.

 """
 return self.lock.contenders()

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/testing/harness.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.testing.harness

"""Kazoo testing harnesses"""
import atexit
import logging
import os
import uuid
import threading
import unittest

from kazoo.client import KazooClient
from kazoo.exceptions import NotEmptyError
from kazoo.protocol.states import (
 KazooState
)
from kazoo.testing.common import ZookeeperCluster
from kazoo.protocol.connection import _SESSION_EXPIRED

log = logging.getLogger(__name__)

CLUSTER = None

def get_global_cluster():
 global CLUSTER
 if CLUSTER is None:
 ZK_HOME = os.environ.get("ZOOKEEPER_PATH")
 ZK_CLASSPATH = os.environ.get("ZOOKEEPER_CLASSPATH")
 assert ZK_HOME or ZK_CLASSPATH, (
 "either ZOOKEEPER_PATH or ZOOKEEPER_CLASSPATH environment variable "
 "must be defined.\n"
 "For deb package installations this is /usr/share/java")

 CLUSTER = ZookeeperCluster(ZK_HOME, classpath=ZK_CLASSPATH)
 atexit.register(lambda cluster: cluster.terminate(), CLUSTER)
 return CLUSTER

[docs]class KazooTestHarness(unittest.TestCase):
 """Harness for testing code that uses Kazoo

 This object can be used directly or as a mixin. It supports starting
 and stopping a complete ZooKeeper cluster locally and provides an
 API for simulating errors and expiring sessions.

 Example::

 class MyTestCase(KazooTestHarness):
 def setUp(self):
 self.setup_zookeeper()

 # additional test setup

 def tearDown(self):
 self.teardown_zookeeper()

 def test_something(self):
 something_that_needs_a_kazoo_client(self.client)

 def test_something_else(self):
 something_that_needs_zk_servers(self.servers)

 """

 def __init__(self, *args, **kw):
 super(KazooTestHarness, self).__init__(*args, **kw)
 self.client = None
 self._clients = []

 @property
 def cluster(self):
 return get_global_cluster()

 @property
 def servers(self):
 return ",".join([s.address for s in self.cluster])

 def _get_nonchroot_client(self):
 return KazooClient(self.servers)

 def _get_client(self, **kwargs):
 kwargs['retry_max_delay'] = 2
 kwargs['max_retries'] = 35
 c = KazooClient(self.hosts, **kwargs)
 try:
 self._clients.append(c)
 except AttributeError:
 self._client = [c]
 return c

 def expire_session(self, client_id=None):
 """Force ZK to expire a client session

 :param client_id: id of client to expire. If unspecified, the id of
 self.client will be used.

 """
 client_id = client_id or self.client.client_id

 lost = threading.Event()
 safe = threading.Event()

 def watch_loss(state):
 if state == KazooState.LOST:
 lost.set()
 if lost.is_set() and state == KazooState.CONNECTED:
 safe.set()
 return True

 self.client.add_listener(watch_loss)

 self.client._call(_SESSION_EXPIRED, None)

 lost.wait(5)
 if not lost.isSet():
 raise Exception("Failed to get notified of session loss")

 # Wait for the reconnect now
 safe.wait(15)
 if not safe.isSet():
 raise Exception("Failed to see client reconnect")
 self.client.retry(self.client.get_async, '/')

 def setup_zookeeper(self, **client_options):
 """Create a ZK cluster and chrooted :class:`KazooClient`

 The cluster will only be created on the first invocation and won't be
 fully torn down until exit.
 """
 if not self.cluster[0].running:
 self.cluster.start()
 namespace = "/kazootests" + uuid.uuid4().hex
 self.hosts = self.servers + namespace

 if 'timeout' not in client_options:
 client_options['timeout'] = 0.8
 self.client = self._get_client(**client_options)
 self.client.start()
 self.client.ensure_path("/")

 def teardown_zookeeper(self):
 """Clean up any ZNodes created during the test
 """
 if not self.cluster[0].running:
 self.cluster.start()

 tries = 0
 if self.client and self.client.connected:
 while tries < 3:
 try:
 self.client.retry(self.client.delete, '/', recursive=True)
 break
 except NotEmptyError:
 pass
 tries += 1
 self.client.stop()
 self.client.close()
 del self.client
 else:
 client = self._get_client()
 client.start()
 client.retry(client.delete, '/', recursive=True)
 client.stop()
 client.close()
 del client

 for client in self._clients:
 client.stop()
 del client
 self._clients = None

[docs]class KazooTestCase(KazooTestHarness):
 def setUp(self):
 self.setup_zookeeper()

 def tearDown(self):
 self.teardown_zookeeper()

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/recipe/counter.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.counter

"""Zookeeper Counter"""

from kazoo.exceptions import BadVersionError
from kazoo.retry import ForceRetryError

[docs]class Counter(object):
 """Kazoo Counter

 A shared counter of either int or float values. Changes to the
 counter are done atomically. The general retry policy is used to
 retry operations if concurrent changes are detected.

 The data is marshaled using `repr(value)` and converted back using
 `type(counter.default)(value)` both using an ascii encoding. As
 such other data types might be used for the counter value.

 Counter changes can raise
 :class:`~kazoo.exceptions.BadVersionError` if the retry policy
 wasn't able to apply a change.

 Example usage:

 .. code-block:: python

 zk = KazooClient()
 counter = zk.Counter("/int")
 counter += 2
 counter -= 1
 counter.value == 1

 counter = zk.Counter("/float", default=1.0)
 counter += 2.0
 counter.value == 3.0

 """
[docs] def __init__(self, client, path, default=0):
 """Create a Kazoo Counter

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The counter path to use.
 :param default: The default value.

 """
 self.client = client
 self.path = path
 self.default = default
 self.default_type = type(default)
 self._ensured_path = False

 def _ensure_node(self):
 if not self._ensured_path:
 # make sure our node exists
 self.client.ensure_path(self.path)
 self._ensured_path = True

 def _value(self):
 self._ensure_node()
 old, stat = self.client.get(self.path)
 old = old.decode('ascii') if old != b'' else self.default
 version = stat.version
 data = self.default_type(old)
 return data, version

 @property
 def value(self):
 return self._value()[0]

 def _change(self, value):
 if not isinstance(value, self.default_type):
 raise TypeError('invalid type for value change')
 self.client.retry(self._inner_change, value)
 return self

 def _inner_change(self, value):
 data, version = self._value()
 data = repr(data + value).encode('ascii')
 try:
 self.client.set(self.path, data, version=version)
 except BadVersionError: # pragma: nocover
 raise ForceRetryError()

[docs] def __add__(self, value):
 """Add value to counter."""
 return self._change(value)

[docs] def __sub__(self, value):
 """Subtract value from counter."""
 return self._change(-value)

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/handlers/utils.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.handlers.utils

"""Kazoo handler helpers"""

HAS_FNCTL = True
try:
 import fcntl
except ImportError: # pragma: nocover
 HAS_FNCTL = False
import functools
import os

def _set_default_tcpsock_options(module, sock):
 sock.setsockopt(module.IPPROTO_TCP, module.TCP_NODELAY, 1)
 if HAS_FNCTL:
 flags = fcntl.fcntl(sock, fcntl.F_GETFD)
 fcntl.fcntl(sock, fcntl.F_SETFD, flags | fcntl.FD_CLOEXEC)
 return sock

[docs]def create_pipe():
 """Create a non-blocking read/write pipe.
 """
 r, w = os.pipe()
 if HAS_FNCTL:
 fcntl.fcntl(r, fcntl.F_SETFL, os.O_NONBLOCK)
 fcntl.fcntl(w, fcntl.F_SETFL, os.O_NONBLOCK)
 return r, w

[docs]def create_tcp_socket(module):
 """Create a TCP socket with the CLOEXEC flag set.
 """
 type_ = module.SOCK_STREAM
 if hasattr(module, 'SOCK_CLOEXEC'): # pragma: nocover
 # if available, set cloexec flag during socket creation
 type_ |= module.SOCK_CLOEXEC
 sock = module.socket(module.AF_INET, type_)
 _set_default_tcpsock_options(module, sock)
 return sock

def create_tcp_connection(module, address, timeout=None):
 if timeout is None:
 # thanks to create_connection() developers for
 # this ugliness...
 timeout = module._GLOBAL_DEFAULT_TIMEOUT

 sock = module.create_connection(address, timeout)
 _set_default_tcpsock_options(module, sock)
 return sock

[docs]def capture_exceptions(async_result):
 """Return a new decorated function that propagates the exceptions of the
 wrapped function to an async_result.

 :param async_result: An async result implementing :class:`IAsyncResult`

 """
 def capture(function):
 @functools.wraps(function)
 def captured_function(*args, **kwargs):
 try:
 return function(*args, **kwargs)
 except Exception as exc:
 async_result.set_exception(exc)
 return captured_function
 return capture

[docs]def wrap(async_result):
 """Return a new decorated function that propagates the return value or
 exception of wrapped function to an async_result. NOTE: Only propagates a
 non-None return value.

 :param async_result: An async result implementing :class:`IAsyncResult`

 """
 def capture(function):
 @capture_exceptions(async_result)
 def captured_function(*args, **kwargs):
 value = function(*args, **kwargs)
 if value is not None:
 async_result.set(value)
 return value
 return captured_function
 return capture

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/recipe/lock.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.lock

"""Zookeeper Locking Implementations

Error Handling
==============

It's highly recommended to add a state listener with
:meth:`~KazooClient.add_listener` and watch for
:attr:`~KazooState.LOST` and :attr:`~KazooState.SUSPENDED` state
changes and re-act appropriately. In the event that a
:attr:`~KazooState.LOST` state occurs, its certain that the lock
and/or the lease has been lost.

"""
import uuid

from kazoo.retry import (
 KazooRetry,
 RetryFailedError,
 ForceRetryError
)
from kazoo.exceptions import CancelledError
from kazoo.exceptions import KazooException
from kazoo.exceptions import LockTimeout
from kazoo.exceptions import NoNodeError
from kazoo.protocol.states import KazooState

[docs]class Lock(object):
 """Kazoo Lock

 Example usage with a :class:`~kazoo.client.KazooClient` instance:

 .. code-block:: python

 zk = KazooClient()
 lock = zk.Lock("/lockpath", "my-identifier")
 with lock: # blocks waiting for lock acquisition
 # do something with the lock

 """
 _NODE_NAME = '__lock__'

[docs] def __init__(self, client, path, identifier=None):
 """Create a Kazoo lock.

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The lock path to use.
 :param identifier: Name to use for this lock contender. This
 can be useful for querying to see who the
 current lock contenders are.

 """
 self.client = client
 self.path = path

 # some data is written to the node. this can be queried via
 # contenders() to see who is contending for the lock
 self.data = str(identifier or "").encode('utf-8')

 self.wake_event = client.handler.event_object()

 # props to Netflix Curator for this trick. It is possible for our
 # create request to succeed on the server, but for a failure to
 # prevent us from getting back the full path name. We prefix our
 # lock name with a uuid and can check for its presence on retry.
 self.prefix = uuid.uuid4().hex + self._NODE_NAME
 self.create_path = self.path + "/" + self.prefix

 self.create_tried = False
 self.is_acquired = False
 self.assured_path = False
 self.cancelled = False
 self._retry = KazooRetry(max_tries=None)

 def _ensure_path(self):
 self.client.ensure_path(self.path)
 self.assured_path = True

[docs] def cancel(self):
 """Cancel a pending lock acquire."""
 self.cancelled = True
 self.wake_event.set()

[docs] def acquire(self, blocking=True, timeout=None):
 """
 Acquire the lock. By defaults blocks and waits forever.

 :param blocking: Block until lock is obtained or return immediately.
 :type blocking: bool
 :param timeout: Don't wait forever to acquire the lock.
 :type timeout: float or None

 :returns: Was the lock acquired?
 :rtype: bool

 :raises: :exc:`~kazoo.exceptions.LockTimeout` if the lock
 wasn't acquired within `timeout` seconds.

 .. versionadded:: 1.1
 The timeout option.
 """
 try:
 retry = self._retry.copy()
 retry.deadline = timeout
 self.is_acquired = retry(self._inner_acquire,
 blocking=blocking, timeout=timeout)
 except KazooException:
 # if we did ultimately fail, attempt to clean up
 self._best_effort_cleanup()
 self.cancelled = False
 raise
 except RetryFailedError:
 self._best_effort_cleanup()

 if not self.is_acquired:
 self._delete_node(self.node)

 return self.is_acquired

 def _inner_acquire(self, blocking, timeout):
 # make sure our election parent node exists
 if not self.assured_path:
 self._ensure_path()

 node = None
 if self.create_tried:
 node = self._find_node()
 else:
 self.create_tried = True

 if not node:
 node = self.client.create(self.create_path, self.data,
 ephemeral=True, sequence=True)
 # strip off path to node
 node = node[len(self.path) + 1:]

 self.node = node

 while True:
 self.wake_event.clear()

 # bail out with an exception if cancellation has been requested
 if self.cancelled:
 raise CancelledError()

 children = self._get_sorted_children()

 try:
 our_index = children.index(node)
 except ValueError: # pragma: nocover
 # somehow we aren't in the children -- probably we are
 # recovering from a session failure and our ephemeral
 # node was removed
 raise ForceRetryError()

 if self.acquired_lock(children, our_index):
 return True

 if not blocking:
 return False

 # otherwise we are in the mix. watch predecessor and bide our time
 predecessor = self.path + "/" + children[our_index - 1]
 if self.client.exists(predecessor, self._watch_predecessor):
 self.wake_event.wait(timeout)
 if not self.wake_event.isSet():
 raise LockTimeout("Failed to acquire lock on %s after %s "
 "seconds" % (self.path, timeout))

 def acquired_lock(self, children, index):
 return index == 0

 def _watch_predecessor(self, event):
 self.wake_event.set()

 def _get_sorted_children(self):
 children = self.client.get_children(self.path)

 # can't just sort directly: the node names are prefixed by uuids
 lockname = self._NODE_NAME
 children.sort(key=lambda c: c[c.find(lockname) + len(lockname):])
 return children

 def _find_node(self):
 children = self.client.get_children(self.path)
 for child in children:
 if child.startswith(self.prefix):
 return child
 return None

 def _delete_node(self, node):
 self.client.delete(self.path + "/" + node)

 def _best_effort_cleanup(self):
 try:
 node = self._find_node()
 if node:
 self._delete_node(node)
 except KazooException: # pragma: nocover
 pass

[docs] def release(self):
 """Release the lock immediately."""
 return self.client.retry(self._inner_release)

 def _inner_release(self):
 if not self.is_acquired:
 return False

 try:
 self._delete_node(self.node)
 except NoNodeError: # pragma: nocover
 pass

 self.is_acquired = False
 self.node = None

 return True

[docs] def contenders(self):
 """Return an ordered list of the current contenders for the
 lock.

 .. note::

 If the contenders did not set an identifier, it will appear
 as a blank string.

 """
 # make sure our election parent node exists
 if not self.assured_path:
 self._ensure_path()

 children = self._get_sorted_children()

 contenders = []
 for child in children:
 try:
 data, stat = self.client.get(self.path + "/" + child)
 contenders.append(data.decode('utf-8'))
 except NoNodeError: # pragma: nocover
 pass
 return contenders

 def __enter__(self):
 self.acquire()

 def __exit__(self, exc_type, exc_value, traceback):
 self.release()

[docs]class Semaphore(object):
 """A Zookeeper-based Semaphore

 This synchronization primitive operates in the same manner as the
 Python threading version only uses the concept of leases to
 indicate how many available leases are available for the lock
 rather than counting.

 Example:

 .. code-block:: python

 zk = KazooClient()
 semaphore = zk.Semaphore("/leasepath", "my-identifier")
 with semaphore: # blocks waiting for lock acquisition
 # do something with the semaphore

 .. warning::

 This class stores the allowed max_leases as the data on the
 top-level semaphore node. The stored value is checked once
 against the max_leases of each instance. This check is
 performed when acquire is called the first time. The semaphore
 node needs to be deleted to change the allowed leases.

 .. versionadded:: 0.6
 The Semaphore class.

 .. versionadded:: 1.1
 The max_leases check.

 """
[docs] def __init__(self, client, path, identifier=None, max_leases=1):
 """Create a Kazoo Lock

 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The semaphore path to use.
 :param identifier: Name to use for this lock contender. This
 can be useful for querying to see who the
 current lock contenders are.
 :param max_leases: The maximum amount of leases available for
 the semaphore.

 """
 # Implementation notes about how excessive thundering herd
 # and watches are avoided
 # - A node (lease pool) holds children for each lease in use
 # - A lock is acquired for a process attempting to acquire a
 # lease. If a lease is available, the ephemeral node is
 # created in the lease pool and the lock is released.
 # - Only the lock holder watches for children changes in the
 # lease pool
 self.client = client
 self.path = path

 # some data is written to the node. this can be queried via
 # contenders() to see who is contending for the lock
 self.data = str(identifier or "").encode('utf-8')
 self.max_leases = max_leases
 self.wake_event = client.handler.event_object()

 self.create_path = self.path + "/" + uuid.uuid4().hex
 self.lock_path = path + '-' + '__lock__'
 self.is_acquired = False
 self.assured_path = False
 self.cancelled = False
 self._session_expired = False

 def _ensure_path(self):
 result = self.client.ensure_path(self.path)
 self.assured_path = True
 if result is True:
 # node did already exist
 data, _ = self.client.get(self.path)
 try:
 leases = int(data.decode('utf-8'))
 except (ValueError, TypeError):
 # ignore non-numeric data, maybe the node data is used
 # for other purposes
 pass
 else:
 if leases != self.max_leases:
 raise ValueError(
 "Inconsistent max leases: %s, expected: %s" %
 (leases, self.max_leases)
)
 else:
 self.client.set(self.path, str(self.max_leases).encode('utf-8'))

[docs] def cancel(self):
 """Cancel a pending semaphore acquire."""
 self.cancelled = True
 self.wake_event.set()

[docs] def acquire(self, blocking=True, timeout=None):
 """Acquire the semaphore. By defaults blocks and waits forever.

 :param blocking: Block until semaphore is obtained or
 return immediately.
 :type blocking: bool
 :param timeout: Don't wait forever to acquire the semaphore.
 :type timeout: float or None

 :returns: Was the semaphore acquired?
 :rtype: bool

 :raises:
 ValueError if the max_leases value doesn't match the
 stored value.

 :exc:`~kazoo.exceptions.LockTimeout` if the semaphore
 wasn't acquired within `timeout` seconds.

 .. versionadded:: 1.1
 The blocking, timeout arguments and the max_leases check.
 """
 # If the semaphore had previously been canceled, make sure to
 # reset that state.
 self.cancelled = False

 try:
 self.is_acquired = self.client.retry(
 self._inner_acquire, blocking=blocking, timeout=timeout)
 except KazooException:
 # if we did ultimately fail, attempt to clean up
 self._best_effort_cleanup()
 self.cancelled = False
 raise

 return self.is_acquired

 def _inner_acquire(self, blocking, timeout=None):
 """Inner loop that runs from the top anytime a command hits a
 retryable Zookeeper exception."""
 self._session_expired = False
 self.client.add_listener(self._watch_session)

 if not self.assured_path:
 self._ensure_path()

 # Do we already have a lease?
 if self.client.exists(self.create_path):
 return True

 with self.client.Lock(self.lock_path, self.data):
 while True:
 self.wake_event.clear()

 # Attempt to grab our lease...
 if self._get_lease():
 return True

 if blocking:
 # If blocking, wait until self._watch_lease_change() is
 # called before returning
 self.wake_event.wait(timeout)
 if not self.wake_event.isSet():
 raise LockTimeout(
 "Failed to acquire semaphore on %s "
 "after %s seconds" % (self.path, timeout))
 else:
 # If not blocking, register another watch that will trigger
 # self._get_lease() as soon as the children change again.
 self.client.get_children(self.path, self._get_lease)
 return False

 def _watch_lease_change(self, event):
 self.wake_event.set()

 def _get_lease(self, data=None):
 # Make sure the session is still valid
 if self._session_expired:
 raise ForceRetryError("Retry on session loss at top")

 # Make sure that the request hasn't been canceled
 if self.cancelled:
 raise CancelledError("Semaphore cancelled")

 # Get a list of the current potential lock holders. If they change,
 # notify our wake_event object. This is used to unblock a blocking
 # self._inner_acquire call.
 children = self.client.get_children(self.path,
 self._watch_lease_change)

 # If there are leases available, acquire one
 if len(children) < self.max_leases:
 self.client.create(self.create_path, self.data, ephemeral=True)

 # Check if our acquisition was successful or not. Update our state.
 if self.client.exists(self.create_path):
 self.is_acquired = True
 else:
 self.is_acquired = False

 # Return current state
 return self.is_acquired

 def _watch_session(self, state):
 if state == KazooState.LOST:
 self._session_expired = True
 self.wake_event.set()

 # Return true to de-register
 return True

 def _best_effort_cleanup(self):
 try:
 self.client.delete(self.create_path)
 except KazooException: # pragma: nocover
 pass

[docs] def release(self):
 """Release the lease immediately."""
 return self.client.retry(self._inner_release)

 def _inner_release(self):
 if not self.is_acquired:
 return False

 try:
 self.client.delete(self.create_path)
 except NoNodeError: # pragma: nocover
 pass
 self.is_acquired = False
 return True

[docs] def lease_holders(self):
 """Return an unordered list of the current lease holders.

 .. note::

 If the lease holder did not set an identifier, it will
 appear as a blank string.

 """
 if not self.client.exists(self.path):
 return []

 children = self.client.get_children(self.path)

 lease_holders = []
 for child in children:
 try:
 data, stat = self.client.get(self.path + "/" + child)
 lease_holders.append(data.decode('utf-8'))
 except NoNodeError: # pragma: nocover
 pass
 return lease_holders

 def __enter__(self):
 self.acquire()

 def __exit__(self, exc_type, exc_value, traceback):
 self.release()

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/up.png

glossary.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		kazoo 1.3.1 documentation »

Glossary

		Zookeeper

		Apache Zookeeper [http://zookeeper.apache.org/] is a centralized
service for maintaining configuration information, naming, providing
distributed synchronization, and providing group services.

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_static/plus.png

_modules/kazoo/retry.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.retry

import logging
import random
import time

from kazoo.exceptions import (
 ConnectionClosedError,
 ConnectionLoss,
 KazooException,
 OperationTimeoutError,
 SessionExpiredError,
)

log = logging.getLogger(__name__)

[docs]class ForceRetryError(Exception):
 """Raised when some recipe logic wants to force a retry."""

[docs]class RetryFailedError(KazooException):
 """Raised when retrying an operation ultimately failed, after
 retrying the maximum number of attempts.
 """

[docs]class InterruptedError(RetryFailedError):
 """Raised when the retry is forcibly interrupted by the interrupt
 function"""

[docs]class KazooRetry(object):
 """Helper for retrying a method in the face of retry-able
 exceptions"""
 RETRY_EXCEPTIONS = (
 ConnectionLoss,
 OperationTimeoutError,
 ForceRetryError
)

 EXPIRED_EXCEPTIONS = (
 SessionExpiredError,
)

[docs] def __init__(self, max_tries=1, delay=0.1, backoff=2, max_jitter=0.8,
 max_delay=3600, ignore_expire=True, sleep_func=time.sleep,
 deadline=None, interrupt=None):
 """Create a :class:`KazooRetry` instance for retrying function
 calls

 :param max_tries: How many times to retry the command.
 :param delay: Initial delay between retry attempts.
 :param backoff: Backoff multiplier between retry attempts.
 Defaults to 2 for exponential backoff.
 :param max_jitter: Additional max jitter period to wait between
 retry attempts to avoid slamming the server.
 :param max_delay: Maximum delay in seconds, regardless of other
 backoff settings. Defaults to one hour.
 :param ignore_expire:
 Whether a session expiration should be ignored and treated
 as a retry-able command.
 :param interrupt:
 Function that will be called with no args that may return
 True if the retry should be ceased immediately. This will
 be called no more than every 0.1 seconds during a wait
 between retries.

 """
 self.max_tries = max_tries
 self.delay = delay
 self.backoff = backoff
 self.max_jitter = int(max_jitter * 100)
 self.max_delay = float(max_delay)
 self._attempts = 0
 self._cur_delay = delay
 self.deadline = deadline
 self._cur_stoptime = None
 self.sleep_func = sleep_func
 self.retry_exceptions = self.RETRY_EXCEPTIONS
 self.interrupt = interrupt
 if ignore_expire:
 self.retry_exceptions += self.EXPIRED_EXCEPTIONS

[docs] def reset(self):
 """Reset the attempt counter"""
 self._attempts = 0
 self._cur_delay = self.delay
 self._cur_stoptime = None

[docs] def copy(self):
 """Return a clone of this retry manager"""
 obj = KazooRetry(max_tries=self.max_tries,
 delay=self.delay,
 backoff=self.backoff,
 max_jitter=self.max_jitter / 100.0,
 max_delay=self.max_delay,
 sleep_func=self.sleep_func,
 deadline=self.deadline,
 interrupt=self.interrupt)
 obj.retry_exceptions = self.retry_exceptions
 return obj

[docs] def __call__(self, func, *args, **kwargs):
 """Call a function with arguments until it completes without
 throwing a Kazoo exception

 :param func: Function to call
 :param args: Positional arguments to call the function with
 :params kwargs: Keyword arguments to call the function with

 The function will be called until it doesn't throw one of the
 retryable exceptions (ConnectionLoss, OperationTimeout, or
 ForceRetryError), and optionally retrying on session
 expiration.

 """
 self.reset()

 while True:
 try:
 if self.deadline is not None and self._cur_stoptime is None:
 self._cur_stoptime = time.time() + self.deadline
 return func(*args, **kwargs)
 except ConnectionClosedError:
 raise
 except self.retry_exceptions:
 if self._attempts == self.max_tries:
 raise RetryFailedError("Too many retry attempts")
 self._attempts += 1
 sleeptime = self._cur_delay + (random.randint(0, self.max_jitter) / 100.0)

 if self._cur_stoptime is not None and time.time() + sleeptime >= self._cur_stoptime:
 raise RetryFailedError("Exceeded retry deadline")

 if self.interrupt:
 while sleeptime > 0:
 # Break the time period down and sleep for no longer than
 # 0.1 before calling the interrupt
 if sleeptime < 0.1:
 self.sleep_func(sleeptime)
 sleeptime -= sleeptime
 else:
 self.sleep_func(0.1)
 sleeptime -= 0.1
 if self.interrupt():
 raise InterruptedError()
 else:
 self.sleep_func(sleeptime)
 self._cur_delay = min(self._cur_delay * self.backoff, self.max_delay)

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/handlers/gevent.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.handlers.gevent

"""A gevent based handler."""
from __future__ import absolute_import

import atexit
import logging

import gevent
import gevent.coros
import gevent.event
import gevent.queue
import gevent.select
import gevent.thread

from gevent.queue import Empty
from gevent.queue import Queue
from gevent import socket
from zope.interface import implementer

from kazoo.handlers.utils import create_tcp_socket, create_tcp_connection
from kazoo.interfaces import IAsyncResult
from kazoo.interfaces import IHandler

_using_libevent = gevent.__version__.startswith('0.')

log = logging.getLogger(__name__)

_STOP = object()

AsyncResult = implementer(IAsyncResult)(gevent.event.AsyncResult)

@implementer(IHandler)
[docs]class SequentialGeventHandler(object):
 """Gevent handler for sequentially executing callbacks.

 This handler executes callbacks in a sequential manner. A queue is
 created for each of the callback events, so that each type of event
 has its callback type run sequentially.

 Each queue type has a greenlet worker that pulls the callback event
 off the queue and runs it in the order the client sees it.

 This split helps ensure that watch callbacks won't block session
 re-establishment should the connection be lost during a Zookeeper
 client call.

 Watch callbacks should avoid blocking behavior as the next callback
 of that type won't be run until it completes. If you need to block,
 spawn a new greenlet and return immediately so callbacks can
 proceed.

 """
 name = "sequential_gevent_handler"
 sleep_func = staticmethod(gevent.sleep)

 def __init__(self):
 """Create a :class:`SequentialGeventHandler` instance"""
 self.callback_queue = Queue()
 self._running = False
 self._async = None
 self._state_change = gevent.coros.Semaphore()
 self._workers = []
 atexit.register(self.stop)

 class timeout_exception(gevent.event.Timeout):
 def __init__(self, msg):
 gevent.event.Timeout.__init__(self, exception=msg)

 def _create_greenlet_worker(self, queue):
 def greenlet_worker():
 while True:
 try:
 func = queue.get()
 if func is _STOP:
 break
 func()
 except Empty:
 continue
 except Exception as exc:
 log.warning("Exception in worker greenlet")
 log.exception(exc)
 return gevent.spawn(greenlet_worker)

[docs] def start(self):
 """Start the greenlet workers."""
 with self._state_change:
 if self._running:
 return

 self._running = True

 # Spawn our worker greenlets, we have
 # - A callback worker for watch events to be called
 for queue in (self.callback_queue,):
 w = self._create_greenlet_worker(queue)
 self._workers.append(w)

[docs] def stop(self):
 """Stop the greenlet workers and empty all queues."""
 with self._state_change:
 if not self._running:
 return

 self._running = False

 for queue in (self.callback_queue,):
 queue.put(_STOP)

 while self._workers:
 worker = self._workers.pop()
 worker.join()

 # Clear the queues
 self.callback_queue = Queue() # pragma: nocover

 def select(self, *args, **kwargs):
 return gevent.select.select(*args, **kwargs)

 def socket(self, *args, **kwargs):
 return create_tcp_socket(socket)

 def create_connection(self, *args, **kwargs):
 return create_tcp_connection(socket, *args, **kwargs)

[docs] def event_object(self):
 """Create an appropriate Event object"""
 return gevent.event.Event()

[docs] def lock_object(self):
 """Create an appropriate Lock object"""
 return gevent.thread.allocate_lock()

[docs] def rlock_object(self):
 """Create an appropriate RLock object"""
 return gevent.coros.RLock()

[docs] def async_result(self):
 """Create a :class:`AsyncResult` instance

 The :class:`AsyncResult` instance will have its completion
 callbacks executed in the thread the
 :class:`SequentialGeventHandler` is created in (which should be
 the gevent/main thread).

 """
 return AsyncResult()

[docs] def spawn(self, func, *args, **kwargs):
 """Spawn a function to run asynchronously"""
 return gevent.spawn(func, *args, **kwargs)

[docs] def dispatch_callback(self, callback):
 """Dispatch to the callback object

 The callback is put on separate queues to run depending on the
 type as documented for the :class:`SequentialGeventHandler`.

 """
 self.callback_queue.put(lambda: callback.func(*callback.args))

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.exceptions

"""Kazoo Exceptions"""
from collections import defaultdict

[docs]class KazooException(Exception):
 """Base Kazoo exception that all other kazoo library exceptions
 inherit from"""

[docs]class ZookeeperError(KazooException):
 """Base Zookeeper exception for errors originating from the
 Zookeeper server"""

[docs]class CancelledError(KazooException):
 """Raised when a process is cancelled by another thread"""

[docs]class ConfigurationError(KazooException):
 """Raised if the configuration arguments to an object are
 invalid"""

[docs]class ZookeeperStoppedError(KazooException):
 """Raised when the kazoo client stopped (and thus not connected)"""

[docs]class ConnectionDropped(KazooException):
 """Internal error for jumping out of loops"""

[docs]class LockTimeout(KazooException):
 """Raised if failed to acquire a lock.

 .. versionadded:: 1.1
 """

[docs]class WriterNotClosedException(KazooException):
 """Raised if the writer is unable to stop closing when requested.

 .. versionadded:: 1.2
 """

def _invalid_error_code():
 raise RuntimeError('Invalid error code')

EXCEPTIONS = defaultdict(_invalid_error_code)

def _zookeeper_exception(code):
 def decorator(klass):
 def create(*args, **kwargs):
 return klass(args, kwargs)

 EXCEPTIONS[code] = create
 klass.code = code
 return klass

 return decorator

@_zookeeper_exception(0)
[docs]class RolledBackError(ZookeeperError):
 pass

@_zookeeper_exception(-1)
[docs]class SystemZookeeperError(ZookeeperError):
 pass

@_zookeeper_exception(-2)
[docs]class RuntimeInconsistency(ZookeeperError):
 pass

@_zookeeper_exception(-3)
[docs]class DataInconsistency(ZookeeperError):
 pass

@_zookeeper_exception(-4)
[docs]class ConnectionLoss(ZookeeperError):
 pass

@_zookeeper_exception(-5)
[docs]class MarshallingError(ZookeeperError):
 pass

@_zookeeper_exception(-6)
[docs]class UnimplementedError(ZookeeperError):
 pass

@_zookeeper_exception(-7)
[docs]class OperationTimeoutError(ZookeeperError):
 pass

@_zookeeper_exception(-8)
[docs]class BadArgumentsError(ZookeeperError):
 pass

@_zookeeper_exception(-100)
[docs]class APIError(ZookeeperError):
 pass

@_zookeeper_exception(-101)
[docs]class NoNodeError(ZookeeperError):
 pass

@_zookeeper_exception(-102)
[docs]class NoAuthError(ZookeeperError):
 pass

@_zookeeper_exception(-103)
[docs]class BadVersionError(ZookeeperError):
 pass

@_zookeeper_exception(-108)
[docs]class NoChildrenForEphemeralsError(ZookeeperError):
 pass

@_zookeeper_exception(-110)
[docs]class NodeExistsError(ZookeeperError):
 pass

@_zookeeper_exception(-111)
[docs]class NotEmptyError(ZookeeperError):
 pass

@_zookeeper_exception(-112)
[docs]class SessionExpiredError(ZookeeperError):
 pass

@_zookeeper_exception(-113)
[docs]class InvalidCallbackError(ZookeeperError):
 pass

@_zookeeper_exception(-114)
[docs]class InvalidACLError(ZookeeperError):
 pass

@_zookeeper_exception(-115)
[docs]class AuthFailedError(ZookeeperError):
 pass

@_zookeeper_exception(-118)
[docs]class SessionMovedError(ZookeeperError):
 pass

@_zookeeper_exception(-119)
[docs]class NotReadOnlyCallError(ZookeeperError):
 """An API call that is not read-only was used while connected to
 a read-only server"""

[docs]class ConnectionClosedError(SessionExpiredError):
 """Connection is closed"""

BW Compat aliases for C lib style exceptions

ConnectionLossException = ConnectionLoss
MarshallingErrorException = MarshallingError
SystemErrorException = SystemZookeeperError
RuntimeInconsistencyException = RuntimeInconsistency
DataInconsistencyException = DataInconsistency
UnimplementedException = UnimplementedError
OperationTimeoutException = OperationTimeoutError
BadArgumentsException = BadArgumentsError
ApiErrorException = APIError
NoNodeException = NoNodeError
NoAuthException = NoAuthError
BadVersionException = BadVersionError
NoChildrenForEphemeralsException = NoChildrenForEphemeralsError
NodeExistsException = NodeExistsError
InvalidACLException = InvalidACLError
AuthFailedException = AuthFailedError
NotEmptyException = NotEmptyError
SessionExpiredException = SessionExpiredError
InvalidCallbackException = InvalidCallbackError

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

_modules/kazoo/recipe/queue.html

 Navigation

 		
 index

 		
 modules |

 		kazoo 1.3.1 documentation »

 		Module code »

 Source code for kazoo.recipe.queue

"""
Zookeeper based queue implementations.
"""

import uuid
from kazoo.exceptions import NoNodeError, NodeExistsError
from kazoo.retry import ForceRetryError
from kazoo.protocol.states import EventType

class BaseQueue(object):
 """A common base class for queue implementations."""

 def __init__(self, client, path):
 """
 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The queue path to use in ZooKeeper.
 """
 self.client = client
 self.path = path
 self._entries_path = path
 self.structure_paths = (self.path,)
 self.ensured_path = False

 def _check_put_arguments(self, value, priority=100):
 if not isinstance(value, bytes):
 raise TypeError("value must be a byte string")
 if not isinstance(priority, int):
 raise TypeError("priority must be an int")
 elif priority < 0 or priority > 999:
 raise ValueError("priority must be between 0 and 999")

 def _ensure_paths(self):
 if not self.ensured_path:
 # make sure our parent / internal structure nodes exists
 for path in self.structure_paths:
 self.client.ensure_path(path)
 self.ensured_path = True

 def __len__(self):
 self._ensure_paths()
 _, stat = self.client.retry(self.client.get, self._entries_path)
 return stat.children_count

[docs]class Queue(BaseQueue):
 """A distributed queue with optional priority support.

 This queue does not offer reliable consumption. An entry is removed
 from the queue prior to being processed. So if an error occurs, the
 consumer has to re-queue the item or it will be lost.

 """

 prefix = "entry-"

[docs] def __len__(self):
 """Return queue size."""
 return super(Queue, self).__len__()

[docs] def get(self):
 """
 Get item data and remove an item from the queue.

 :returns: Item data or None.
 :rtype: bytes
 """
 self._ensure_paths()
 children = self.client.retry(self.client.get_children, self.path)
 children = list(sorted(children))
 return self.client.retry(self._inner_get, children)

 def _inner_get(self, children):
 if not children:
 return None
 name = children.pop(0)
 try:
 data, stat = self.client.get(self.path + "/" + name)
 except NoNodeError: # pragma: nocover
 # the first node has vanished in the meantime, try to
 # get another one
 raise ForceRetryError()
 try:
 self.client.delete(self.path + "/" + name)
 except NoNodeError: # pragma: nocover
 # we were able to get the data but someone else has removed
 # the node in the meantime. consider the item as processed
 # by the other process
 raise ForceRetryError()
 return data

[docs] def put(self, value, priority=100):
 """Put an item into the queue.

 :param value: Byte string to put into the queue.
 :param priority:
 An optional priority as an integer with at most 3 digits.
 Lower values signify higher priority.
 """
 self._check_put_arguments(value, priority)
 self._ensure_paths()
 path = '{path}/{prefix}{priority:03d}-'.format(
 path=self.path, prefix=self.prefix, priority=priority)
 self.client.create(path, value, sequence=True)

[docs]class LockingQueue(BaseQueue):
 """A distributed queue with priority and locking support.

 Upon retrieving an entry from the queue, the entry gets locked with an
 ephemeral node (instead of deleted). If an error occurs, this lock gets
 released so that others could retake the entry. This adds a little penalty
 as compared to :class:`Queue` implementation.

 The user should call the :meth:`LockingQueue.get` method first to lock and
 retrieve the next entry. When finished processing the entry, a user should
 call the :meth:`LockingQueue.consume` method that will remove the entry
 from the queue.

 This queue will not track connection status with ZooKeeper. If a node locks
 an element, then loses connection with ZooKeeper and later reconnects, the
 lock will probably be removed by Zookeeper in the meantime, but a node
 would still think that it holds a lock. The user should check the
 connection status with Zookeeper or call :meth:`LockingQueue.holds_lock`
 method that will check if a node still holds the lock.

 .. note::
 :class:`LockingQueue` requires ZooKeeper 3.4 or above, since it is
 using transactions.
 """
 lock = "/taken"
 entries = "/entries"
 entry = "entry"

[docs] def __init__(self, client, path):
 """
 :param client: A :class:`~kazoo.client.KazooClient` instance.
 :param path: The queue path to use in ZooKeeper.
 """
 super(LockingQueue, self).__init__(client, path)
 self.id = uuid.uuid4().hex.encode()
 self.processing_element = None
 self._lock_path = self.path + self.lock
 self._entries_path = self.path + self.entries
 self.structure_paths = (self._lock_path, self._entries_path)

[docs] def __len__(self):
 """Returns the current length of the queue.

 :returns: queue size (includes locked entries count).
 """
 return super(LockingQueue, self).__len__()

[docs] def put(self, value, priority=100):
 """Put an entry into the queue.

 :param value: Byte string to put into the queue.
 :param priority:
 An optional priority as an integer with at most 3 digits.
 Lower values signify higher priority.

 """
 self._check_put_arguments(value, priority)
 self._ensure_paths()

 self.client.create(
 "{path}/{prefix}-{priority:03d}-".format(
 path=self._entries_path,
 prefix=self.entry,
 priority=priority),
 value, sequence=True)

[docs] def put_all(self, values, priority=100):
 """Put several entries into the queue. The action only succeeds
 if all entries where put into the queue.

 :param values: A list of values to put into the queue.
 :param priority:
 An optional priority as an integer with at most 3 digits.
 Lower values signify higher priority.

 """
 if not isinstance(values, list):
 raise TypeError("values must be a list of byte strings")
 if not isinstance(priority, int):
 raise TypeError("priority must be an int")
 elif priority < 0 or priority > 999:
 raise ValueError("priority must be between 0 and 999")
 self._ensure_paths()

 with self.client.transaction() as transaction:
 for value in values:
 if not isinstance(value, bytes):
 raise TypeError("value must be a byte string")
 transaction.create(
 "{path}/{prefix}-{priority:03d}-".format(
 path=self._entries_path,
 prefix=self.entry,
 priority=priority),
 value, sequence=True)

[docs] def get(self, timeout=None):
 """Locks and gets an entry from the queue. If a previously got entry
 was not consumed, this method will return that entry.

 :param timeout:
 Maximum waiting time in seconds. If None then it will wait
 untill an entry appears in the queue.
 :returns: A locked entry value or None if the timeout was reached.
 :rtype: bytes
 """
 self._ensure_paths()
 if not self.processing_element is None:
 return self.processing_element[1]
 else:
 return self._inner_get(timeout)

[docs] def holds_lock(self):
 """Checks if a node still holds the lock.

 :returns: True if a node still holds the lock, False otherwise.
 :rtype: bool
 """
 if self.processing_element is None:
 return False
 lock_id, _ = self.processing_element
 lock_path = "{path}/{id}".format(path=self._lock_path, id=lock_id)
 self.client.sync(lock_path)
 value, stat = self.client.retry(self.client.get, lock_path)
 return value == self.id

[docs] def consume(self):
 """Removes a currently processing entry from the queue.

 :returns: True if element was removed successfully, False otherwise.
 :rtype: bool
 """
 if not self.processing_element is None and self.holds_lock:
 id_, value = self.processing_element
 with self.client.transaction() as transaction:
 transaction.delete("{path}/{id}".format(
 path=self._entries_path,
 id=id_))
 transaction.delete("{path}/{id}".format(
 path=self._lock_path,
 id=id_))
 self.processing_element = None
 return True
 else:
 return False

 def _inner_get(self, timeout):
 flag = self.client.handler.event_object()
 lock = self.client.handler.lock_object()
 canceled = False
 value = []

 def check_for_updates(event):
 if not event is None and event.type != EventType.CHILD:
 return
 with lock:
 if canceled or flag.isSet():
 return
 values = self.client.retry(self.client.get_children,
 self._entries_path,
 check_for_updates)
 taken = self.client.retry(self.client.get_children,
 self._lock_path,
 check_for_updates)
 available = self._filter_locked(values, taken)
 if len(available) > 0:
 ret = self._take(available[0])
 if not ret is None:
 # By this time, no one took the task
 value.append(ret)
 flag.set()

 check_for_updates(None)
 retVal = None
 flag.wait(timeout)
 with lock:
 canceled = True
 if len(value) > 0:
 # We successfully locked an entry
 self.processing_element = value[0]
 retVal = value[0][1]
 return retVal

 def _filter_locked(self, values, taken):
 taken = set(taken)
 available = sorted(values)
 return (available if len(taken) == 0 else
 [x for x in available if x not in taken])

 def _take(self, id_):
 try:
 self.client.create(
 "{path}/{id}".format(
 path=self._lock_path,
 id=id_),
 self.id,
 ephemeral=True)
 value, stat = self.client.retry(self.client.get,
 "{path}/{id}".format(path=self._entries_path, id=id_))
 except (NoNodeError, NodeExistsError):
 # Item is already consumed or locked
 return None
 return (id_, value)

 © Copyright 2011-2013, Kazoo team.
 Created using Sphinx 1.1.3.

